
    Advanced search 

Linux Journal Issue #65/September 1999

Focus

Cooking with Linux  by Marjorie Richardson

Features

Cooking with Linux —The French Connection  by Marcel Gagné
Mr. Gagné provides us with several recipes from his famed
French kitchen.

Natural Selection in a Linux Universe  by Travis Metcalfe and Ed
Nather

Astronomers at the University of Texas-Austin are using the
ideas of Charles Darwin to learn about the interior of white
dwarf stars—using a minimal parallel Linux cluster tailored
specifically to their application.

Multilink PPP: One Big Virtual WAN Pipe  by George E. Conant
MLPPP gives network managers the power to deliver WAN
bandwidth on demand using an array of services.

Netscape Plug-Ins  by Larry Hoff
Extending Netscape's ability to handle additional file formats.

Forum

Open Source with Applix  by Craig Knudsen
Linux Distributions Comparison  
Caldera's Ransom Love  by Marjorie Richardson
Multicast: From Theory to Practice  by Juan-Mariano de Goyeneche

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/065/3583.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3489.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3255.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3149.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3088.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3574.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3592.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3614.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3041.html


Broadcasting over the Internet—a look at developing
applications for this new technology.

The 19th Century Meets the 21st  by Paul Murphy
Mr. Murphy describes how he set up DSL service for the old
Brooklyn apartment where he lives.

Columns

Kernel Korner   Supporting Multiple Kernel Versions  by Tony Wildish
Supporting Multiple Kernel Versions Expect scripts to help you
support multiple versions of the kernel across different
platforms.

Focus on Software  by David A. Bandel
At the Forge   Dynamic Graphics  by Reuven M. Lerner

Dynamic Graphics Generating graphics, charts and graphs for
your web site is easy following Mr. Lerner's instructions.

The Cutting Edge   Voice-Over IP for Linux  by Greg Herlein and Ed
Okerson

Voice-Over IP for Linux Make your long-distance calls over the
Internet using this new technology for Linux.

Take Command   cron: Job Scheduler  by Michael S. Keller

Reviews

Red Hat 6.0  by Jason Kroll
ApplixWare 4.4.1 for Linux  by Dean M. Staff
Linux Device Drivers  by Mark Bishop
Learning Perl/Tk  by Bill Cunningham

Departments

Letters  
More Letters to the Editor

upFRONT  
Penguin's Progress: The New Building Trade  
New Products  
Best of Technical Support  

Strictly On-line

Adventure  by Joseph Pranevich
A trip down gaming's memory lane with an enthusiastic, long-
time player.

Remotely Monitoring a Satellite Instrument  by Guy Beaver
How a small aerospace company uses Linux to remotely monitor
the performance of a satellite instrument.

First UNIX/Linux National Competition held in Ljubljana  by Primoz
Peterlin and Ales Kosir

A look at the questions and answers for a contest to find Linux
solutions to common problems.

Linux Apprentice: Filters  by Paul Dunne

https://secure2.linuxjournal.com/ljarchive/LJ/065/3038.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3519.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3581.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3579.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3511.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3290.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3590.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3525.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/2899.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3486.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3582.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/lte65more.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3585.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3580.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3586.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3279.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3435.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3527.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/2479.html


This article is about filtering, a very powerful facility available to
every Linux user, but one which migrants from other operating
systems may find new and unusual.

The Unified Modeling Language User Guide  by Geoff Glasson

Archive Index 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3328.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Focus: Cooking with Linux

Marjorie Richardson

Issue #65, September 1999

Being able to achieve our computing goals while having a good time is a
winning combination for all of us. 

Back in the early days of Linux Journal, we had a column by Matt Welsh called
“Cooking with Linux” in which he told us about fun things to do with Linux, and
when necessary, gave us scripts (recipes) for accomplishing them. With this
month's focus, we revisit the spirit of those columns with articles from experts,
who show fun things we can do with Linux. After all, being able to achieve our
computing goals while having a good time is a winning combination for all of
us. 

So this month we feature articles about scripts (shell and Perl) for obtaining
useful information from your computer, Netscape plug-ins, multilink PPP and
clustering—all designed to help you have fun with Linux.

Other Things

Two things I'd like to mention, in case you haven't already found them while
browsing the Web. One is Linux Journal Interactive, our archive site for all
articles printed in our magazine from issue number one through the current
issue. This site can currently be accessed only by Linux Journal subscribers; you
will need your subscription number from the label to log in. In addition to the
articles, you can post comments about them to discussion groups. Also
available is a search facility to find LJ articles on any subject of interest to you. 
LJI can be found at http://interactive.linuxjournal.com/.

Two, we have completely redesigned our web site at www.linuxjournal.com/.
The new site came alive on June 25. If you haven't visited us lately, now is the
time to take another look. I know you will like the new appearance and the
information you find there. This is the location for the Table of Contents of each
issue with links to all “Strictly On-Line” articles. Unlike LJI, the articles here are

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://interactive.linuxjournal.com
http://www.linuxjournal.com/


world readable. Accessible are product reviews, the Best of Technical Support
column and at least one feature each month. Also on the site are articles by SSC
staff members, including Linux Journal Sr. Editor, Doc Searls, as well as links to
all the Linux resources you'll ever need.

Come on by, we'll be looking for you.

—Marjorie Richardson

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Cooking with Linux—The French Connection

Marcel Gagné

Issue #65, September 1999

Mr. Gagné provides us with several recipes from his famed French restaurant. 

Allo, and welcome to Chez Marcel, home of fine French Linux cooking. 

Please take a seat. If you have not already done so, I would like you to read this
article with a somewhat exaggerated French accent since that is the way I wrote
it. Even the README files are heavily accented. For those of you who, like
myself, are French, you may translate as you read, thus adding another level of
authenticity to the excellent menu that awaits you.

It is an honour and a privilege to welcome you to my kitchen. Tonight, I have a
special treat for you. The recipes I have prepared are made from common
Linux distribution ingredients so that you can recreate these delicacies when
you return to your own kitchen CPU. Tonight's menu:

• Mail notification for Windows clients
• What's my IP?
• diald Control
• Waiter! More disk.
• Waiter! There's a fly in my system.
• Is it That Time Already?

A Little Wine with Dinner?

I must tell you right now that I am thrilled you have decided to join me in my
kitchen. Much of what I have in store for you is designed to make Windows 9x
more productive with a little help from Linux. If you have already cast away
your Windows PC but you miss some forgotten piece of software (provided that
software is not too demanding), you could check out http://www.winehq.com/
for the latest version of the Windows non-emulator for Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


For many users out there, the Windows workstation is still on the desktop,
while the Linux machine performs such noble tasks for the Windows user as
connecting to the Internet, providing firewall services, delivering mail, sharing
disk space and printers, among other services.

What we have in store for you here today are Linux scripts that can make your
Windows experience more enjoyable.

Talking to Windows

In the next few examples, we will have our Linux system talk back to Windows.
While that is a good idea, we must first set up Windows to listen; otherwise, all
our talk will disappear into the proverbial ether. When our Linux system needs
to contact a Windows user, it will do so using Samba's smbclient messaging
functionality. Obviously, that requires a system running Samba. On the
Windows side, it requires Winpopup.

To set up Winpopup to start each time you boot Windows, create a shortcut in
the Windows Startup folder. Click on the Start button, then Settings, then
Taskbar. Choose the tab that says “Start Menu Programs”, then click the
Advanced button. This will open a Windows Explorer window. Open the Startup
folder under Programs and add a shortcut to winpopup.exe. Accept the default
name, and you will wind up with a cute little Jack-in-the-box icon. Right-click on
it to access the properties tab. Now, set the Run: option to Minimized.
Winpopup starts up out of the way, and pops up only when it gets a message.
Double-click the icon to start it right away.

One more thing: you should now see Winpopup sitting minimized on your
taskbar. Click on it to bring it up. Now click on Messages, and choose Options
from the drop-down menu. Click the box for “Pop up dialog on message
receipt”. Click OK and re-minimize Winpopup. Windows is now ready to receive
messages from your Linux system, which brings us to the next item on the
menu.

Why Didn't Somebody Tell Me I Have Mail?

This is a frequent question we get from users. You are the administrator of a
small- to medium-size office; you've set up an Internet gateway that picks up
the mail on a regular basis using fetchmail, which then stores it on your Linux
server. The problem is that your users are still running Windows with some sort
of stand-alone POP3 e-mail package like David Harris' Pegasus Mail. While
many packages can be set up to retrieve mail automatically, keeping them open
and running taxes their already taxed Windows system. This means users tend
to point out how slowly their systems are running. You suggest they close a few
applications. “How about e-mail?” you suggest. To which they reply, “What if I



miss an important message?” The solution is the checkusermail script shown in
Listing 1.

Listing 1.

In /usr/local/etc, create a small text file called mail_notify with the names of
users who receive mail on your system. If the Windows clients are named
differently (in the network configurator of the Windows control panel) than the
user ID for mail, create an /etc/lmhosts file with IP addresses matching your
mail user IDs, and the results should be the same. The script can be run from 
cron at whatever time interval suits your environment. Since it runs as root, it
can spy into everyone's mailbox with the frm command. It will tell each user
they have mail and how many messages. If there is no mail, there is no
message and no need to waste time and energy checking every few minutes.

Another happy soul you'll discover after you deploy this script is the boss who
had been complaining about either the amount of time users spent checking
mail, or the user who did not check it often enough and missed an important
message.

Hey There, What's Your IP?

In the last example, I talked about the beleaguered administrator (is there any
other kind?) and suggested this might be a useful tool for them as well. What if
you are administering that system from far away? Worse yet, this Internet
gateway runs on a budget—it's a simple dial-up connection to an ISP running
diald and IP masquerading. When trouble strikes, they call you. Trouble means
you use TELNET to log in, check things out and fix the problems remotely.
Trouble is, the IP is dynamic and changes with each connection to the ISP. The
solution this time is the showppp.pl script shown in Listing 2. The script is
simple and lives in cgi-bin. Depending on your web server setup, you might
want to rename this one showppp.pl.

Listing 2.

Setting up a simple Intranet for your users is a breeze. A nice corporate home
page with some popular links to the Internet makes it easier on your resources
than having each user start up their browser with http://www.cnn.com/ or
http://www.excite.com/ as their start page. If your dial-up connection gives you
only a fixed number of hours per month, that time can get chewed up very
quickly.

Why not use that same page and give your users a link to a script that will
display the IP address of your dial-up IP connection without requiring them to
log in to your Linux server? Figure 1 shows just such a page.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3489l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3489l2.html


Figure 1. Show IP Page

Speaking of diald...

Every once in a while, the diald process may get hung up. Sometimes the
modem has gotten hung up and diald can't seem to drop it. In either case, the
easiest way to get life back to normal is to stop diald and restart the process.
Since you are operating remotely and want to make this as painless as possible,
you can either do the work yourself or talk one of your remote users through
the process. It would be so much easier if they could just type one command,
rather than doing a ps ax | grep diald while hoping they kill the right PID and
not bring your system down. Listing 3 is a little script to do just that. The user
simply types:

diald.control restart

to get things moving again. You can also use the script to stop diald, start it, or
shut it down and start a single instance of mgetty in order to pick up a fax (but
that's for another time). 

Listing 3.

You can use this example as a template to create any number of start, stop or
restart scripts. When necessary, you can have trusted users log in to your
server and run simple administration scripts like this one without risking
damage to your system or the equally ominous possibility of killing an
important process like init. After all, kill --1 looks very similar to kill 1, doesn't it?

Waiter! More disk!

Remember those great little messages for letting your users know they have
mail? How about using that same technique to let you, the administrator, know
that some important system event needs your attention? For example, suppose
you are constantly battling disk space. Wouldn't it be nice if the system let you
know that resources are low? With the next little Perl script (see Listing 4), you
can have your Linux system send a pop-up message to your Windows
workstation alerting you that system resources are low. This script scans disk
partitions and reports to client speedy that disk space usage is over 90%. (See
Figure 2.)

Listing 4.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3489f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3489f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3489f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3489l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3489l4.html


Figure 2. Disk Space Usage Screen 

The Windows winpopup utility is a great tool for the user who still runs a
Windows client but needs to get information sent to him from their Linux
servers. This script and the earlier mail notification script highlight this
flexibility.

By the way, the next item on the menu, the fly—that's just to get you thinking
about other possibilities.

Where Does the Time Go and What Time Is It Anyway?

In my business, I've set up a number of Linux internet gateways. To make these
installations as inexpensive as possible, we set the machines to dial every half
hour or so to pick up mail. That half-hour mark is also our cue to log in using
TELNET if we need to do some administration work on the machines.
Unfortunately, the time on each machine can vary. How about a way to check
the time against some reliable source and adjust the Linux server?

The script in Listing 5 is a bit of Perl magic. It opens a socket on a secondary
time server, picks up the time, and closes the socket. This is a nice alternative to
NTP in that it does not tax the NTP time server's resources. For that very
reason, the NTP rules ask that you do not use primary servers if you don't need
to. A link to the “Public NTP Time Servers” page is provided in Resources.

Listing 5.

Notice the line in Listing 5 that says remote_host="chime.utoronto.ca";. The
host specified here is chime.utoronto.ca, but it could be one of any number of
machines which offer primary or secondary time services. Consider the rules,
though, and visit the NTP time server page for a system in your area and time
zone.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3489l5.html


Sorry Folks, it's Closing Time

Well, that last script on time was my way of getting all of you out of the
restaurant. I hope you'll pay another visit to Chez Marcel. We hope we've
succeeded in whetting your appetite for some of the wonderful and fun things
you can do with a Linux system. Bon Appétit!

Resources

Marcel Gagné (mggagne@salmar.com) lives in the mythical city of Mississauga,
Ontario. Besides being a space alien, adventurer, pilot, magician and
international man of mystery, he is president of Salmar Consulting Inc., a
systems integration and network consulting firm. He also writes science fiction
and fantasy, and edits TransVersions, a science fiction, fantasy and horror
magazine.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3489s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Natural Selection in a Linux Universe

Travis Metcalfe

Ed Nather

Issue #65, September 1999

Astronomers at the University of Texas-Austin are using the ideas of Charles
Darwin to learn about the interior of white dwarf stars—using a minimal
parallel Linux cluster tailored specifically to their application. 

Astronomers worry about how stars work. Our current models describe stars
as huge, hot gasballs, bloated and made luminous by a fusion furnace deep
inside that burns hydrogen into helium and releases energy in the process. A
kind of internal thermostat keeps them stable, so our planet enjoys a
comfortable environment in its orbit around our star, the sun. In about 6,000
million years or so, all available fuel will be burned up, and as the fuel gets low,
the sun will bloat, then shrink until it is 100 times smaller than it is now,
becoming a white dwarf star. Written inside, in the ashes of the furnace, will be
its nuclear history. 

We have pieced together this story by looking at many different stars, which
last much longer than we do, but we cannot see inside any of them. Stars are
very luminous yet thoroughly opaque. Geologists have built up a detailed
picture of the earth's interior, even though it is opaque too; they do this by
watching as compression waves from earthquakes rattle around inside and
make their way back to the surface: seismology. By a very fortunate
circumstance, we have found that some white dwarf stars vibrate internally
with something akin to earthquakes, all the time. Their rapid changes in
brightness tell us what is going on inside: asteroseismology.

To take advantage of this cosmic bonanza, we build computer models of the
stars, with adjustable parameters that reflect, one-to-one, the physics going on
inside. We must “vibrate” our model and tweak its parameters until the model
behaves like a real star. We then believe that the parameters in our model tell

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


us about the physics inside the white dwarf star. We can then start to read the
history written there.

Figure 1. Evolving Penguin 

Evolving Darwin

The basic idea is nifty, but the practice is a bit complicated. The models have
many parameters, not all independent of one another, and we are not
completely sure we have all the physics right. To make sure the set of model
parameters we use is the best fit to the observed behavior and the only
reasonable one, we have to explore a very large, multi-dimensional parameter
space—far too large and complex to examine in exhaustive detail. No existing
computer could handle it. There is a way though: we populate our huge
parameter space at random with models whose parameters cover the whole
shebang. Then we breed them together, preferentially allowing those which fit
the observations fairly well to survive into later generations. This survival of the
fittest is done with a “genetic algorithm” that mimics, in a crude but effective
way, the process of natural selection proposed by Charles Darwin.

Genetic Algorithms

Even using this trickery, a lot of computing is required, so we built a massive
parallel system to cut the runtime to hours instead of weeks. Most of the model
calculations are done in floating-point arithmetic, so we measure performance
in flops, the number of floating-point operations per second. Our assembled
system, called a metacomputer, is capable of more than two gigaflops—2,000
million floating-point operations per second—not bad for an assembly of Linux
boxes.

Our strategy in designing this system was minimalist; keep each computer
node as cheap and simple as possible, consistent with doing our job and
getting the maximum amount of computing for the buck. Our budget is fairly

https://secure2.linuxjournal.com/ljarchive/LJ/065/3255s1.html


limited. CPU cost is not a linear function of speed, so you pay a great deal more
per megaflop for the fastest CPU on the market. Older CPUs are cheaper, but
require more boxes and supporting electronics to house them for the same
final performance. We watched the price drops with avid interest and jumped
just after the 300MHz Intel P-II dropped below $300. We could afford a good
master control computer and 32 computing nodes with our $22,000 budget.

Figure 2. Computer Lab 

Some time after we settled on the design, we became aware of the existence of
Beowulf machines through an article in Linux Journal (see Resources)—also
parallel systems running Linux, but with faster Ethernet connections and more
storage than our problem requires. They are much more general purpose than
the system we built, so they can handle many problems ours cannot. They cost
more too.

Cheap Hardware, Free Software

Our master computer is a Pentium-II 333 MHz system with 128MB SDRAM and
two 8.4GB hard disks. It has two NE-2000 compatible network cards, each
connected to 16 nodes using a simple 10base-2 coaxial network. We assembled
the nodes from components obtained at a local discount computer outlet. Each
has a Pentium-II 300 MHz processor housed in an ATX tower case with 32MB
SDRAM and an NE-2000-compatible network card. We used inexpensive 32KB
EPROMs, programmed with a BP Microsystems EP-1 using a ROM image from
Gero Kuhlmann's Netboot package, allowing each node to boot from the
network.

Table 1.

Configuring the software was not much more complicated than setting up a
diskless Linux box (see Robert Nemkin's Diskless Linux Mini-HOWTO). The main
difference was that we minimized network traffic by giving each node an

https://secure2.linuxjournal.com/ljarchive/LJ/065/3255t1.html


identical, independent file system rather than mounting a shared network file
system. Since the nodes had no hard disks, we needed to create a self-
contained file system that could be mounted in a modest fraction of the 32MB
RAM.

To create this root file system, we used Tom Fawcett's YARD package (http://
www.croftj.net/~fawcett/yard/). Although Yard was designed to make rescue
disks, it was also well-suited for our needs. We included in the file system a
trimmed-down, execute-only distribution of the PVM (parallel virtual machine)
software developed at Oak Ridge National Laboratory (http://
www.epm.ornl.gov/pvm/). PVM allows code to be run on the system in parallel
by starting a daemon on each node and using a library of message-passing
routines to coordinate the tasks from the master computer.

We configured the master computer to be a BOOTP/TFTP server, allowing each
node to download the boot image—essentially a concatenation of a kernel
image and a compressed root file system. We used the Netboot package
(http://www.han.de/~gero/netboot/) to create this boot image using the root
file system created by YARD and a small kernel image custom-compiled for the
nodes.

How It Works

With the master computer up and running, we turned on each node one at a
time. By default, the BIOS in each node tries to boot from the network first. It
finds the boot ROM on the Ethernet card, and the ROM image broadcasts a
BOOTP request over the network. When the server receives the request, it
identifies the associated hardware address, assigns a corresponding IP address,
and allows the requesting node to download the boot image. The node loads
the kernel image into memory, creates an 8MB initial RAM disk, mounts the
root file system, and executes an rc script which starts essential services and
daemons.

Once all nodes are up, we log in to the server and start the PVM daemon. An
rhosts file in the home directory on each of the nodes allows the server to start
up the daemons. We can then run in parallel any executable file that uses the
PVM library routines and is included in the root file system.

For our problem, the executable residing on the nodes involves building and
vibrating a white dwarf model and comparing the resulting theoretical
frequencies to those observed in a real white dwarf. A genetic algorithm
running on the master computer is concerned with sending sets of model
parameters to each node and modifying the parameter sets based on the
results. We tested the performance of the finished metacomputer with the
same genetic algorithm master program as our white dwarf project, but with a

http://www.croftj.net/~fawcett/yard
http://www.croftj.net/~fawcett/yard
http://www.epm.ornl.gov/pvm
http://www.epm.ornl.gov/pvm
http://www.han.de/~gero/netboot


less computationally intensive node program. The code ran 29.5 times faster
using all 32 nodes than it did using a single node. Our tests also indicate that
node programs with a higher computation to communication ratio yield an
even better efficiency. We expect the white dwarf code to be approximately ten
times more computationally intensive than our test problem.

Stumbling Blocks

After more than three months without incident, one of the nodes abruptly died.
As it turned out, the power supply had gone bad, frying the motherboard and
the CPU fan in the process. The processor overheated, shut itself off, and
triggered an alarm. We now keep a few spare CPU fans and power supplies on
hand. This is the only real problem we have had with the system, and it was
easily diagnosed and fixed.

Conclusions

The availability of open-source software like Linux, PVM, Netboot and YARD
made this project possible. We would never have considered doing it this way if
we'd had to use a substantial fraction of our limited budget to buy software as
well as hardware and if we'd been unable to modify it to suit our needs once
we had it. This is an aspect of the Open Source movement we have not seen
discussed before—the ability to try something new and show it can work,
before investing a lot of money in the fond hope that everything will turn out
fine.

Resources

Travis Metcalfe (travis@astro.as.utexas.edu) is a doctoral student in astronomy
at the University of Texas-Austin. When not sitting in front of a computer, he
can usually be found tilting at windmills. His use of Linux since 1994 has
reportedly made him more unruly. 

Ed Nather (nather@astro.as.utexas.edu) is a professor of astronomy who
publishes science fiction in several astronomical journals, under an alias (R. E.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3255s2.html
mailto:travis@astro.as.utexas.edu
mailto:nather@astro.as.utexas.edu


Nather). In his spare time, he installs and re-installs the newest Linux
distributions, hoping to find the perfect one. He also believes in the tooth fairy. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Multilink PPP: One Big Virtual WAN Pipe

George E. author)

Issue #65, September 1999

MLPPP gives network managers the power to deliver WAN bandwidth on
demand using an array of services. 

Network management is a little like alchemy: take a dash or two of ISDN, add
some frame relay, throw in a couple of routers, mix them all together, and
somehow, some way, the result is bandwidth gold. 

Of course, the formula for creating fully interoperable networks is much more
complicated. Fortunately, network managers do have access to some tools that
can make bandwidth magic a little easier to perform. Two of the most
important elements in the technology bag of tricks are the point-to-point
protocol (PPP) and its follow-up, the multilink point-to-point protocol (MLPPP).

PPP, a product of the Internet Engineering Task Force (IETF), is the de facto
WAN link protocol for connecting clients and servers and for interconnecting
routers to form enterprise networks. PPP's main advantage is that unlike other
protocols which operate at the data link layer, PPP achieves interoperability
between devices by negotiating different configuration options, including link
quality, link authentication and network protocols.

Over the years, the IETF has made some significant changes to PPP. But as its
name states, PPP is intended for simple point-to-point connections. Now that
the enterprise network infrastructure is moving rapidly to digital switched
services such as ISDN, frame relay and ATM, PPP is in need of even more
changes.

Enter MLPPP, known in IETF circles as RFC (Request for Comment) 1717. MLPPP
takes advantage of the ability of switched WAN services to open multiple virtual
connections between devices to give users extra bandwidth as needed. With
MLPPP, routers and other access devices can combine multiple PPP links
connected to various WAN services into one logical data pipe.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


The IETF formally approved the MLPPP specification last November. Makers of
ISDN routers and access devices have already started using MLPPP to bundle
64Kbps ISDN B channels to deliver more bandwidth. MLPPP also allows
network managers aggregate WAN circuits of different types without requiring
major configuration changes to existing router Internet works.

Because MLPPP works over any switched WAN service, it has a wide range of
potential uses (see “PPP Plus”). Network managers could deploy MLPPP-
equipped devices to create a technology-independent enterprise framework in
which the actual WAN services linking two devices would be invisible to end
users. Under this model, WAN devices would negotiate bandwidth rules
between two directly connected peers, using whatever type of service was
available. New digital WAN services such as ATM (asynchronous transfer mode)
could be added to the network mix as needed, without making the existing
network infrastructure obsolete.

The ABCs of PPP

Although it is usually considered a single entity, PPP is actually a group of
protocols that together provide an extensive set of network connectivity
services. The PPP suite is based on four key design principles: negotiation of
configuration options, multi-protocol support, protocol extendibility and WAN
service independence.

Negotiation of configuration options: This refers to PPP's ability to establish
throughput requirements between two directly connected end systems. In an
enterprise network, end systems often differ in terms of buffer requirements,
packet-size limits and network protocol-support lists. The physical link that
interconnects any two end systems could vary from a low-speed analog line to
a high-speed digital connection with varying degrees of line quality.

To cope with all these possibilities, PPP has a suite of standard default settings
to handle all common configurations. To establish a link, two communicating
devices attempt to use these default settings to find a common ground. Each
end of the PPP link describes its capabilities and requirements; the settings are
negotiated between the two sides for each option at the link level. These
options include data encapsulation formats, packet sizes, link quality and
authentication.

The protocol that negotiates all these options is known as the link control
protocol (LCP). The protocol that negotiates the network protocols to be
multiplexed over a PPP link is called the network control protocol (NCP); there
can be many NCP data streams over a single PPP link. Although PPP's
configuration negotiation options also allow end systems to set link peer
authentication (a security function) and data compression options, PPP does



not dictate the actual algorithms used for security or compression. For security,
PPP defines PAP (password authentication protocol) and CHAP (challenge
handshake authentication protocol) as common standard authentication
methods that may be negotiated, but it also lets users add new authentication
algorithms. The same holds true for compression.

Multi-protocol support: PPP's ability to handle multiple network-layer protocols
was one of the chief reasons it became a de facto standard. Unlike the serial IP
protocol (SLIP), the IETF routing protocol that handles only IP datagrams, PPP
works with a range of packet formats including IP, Novell IPX, AppleTalk,
DECnet, XNS, Banyan Vines and OSI. Each network-layer protocol is separately
configured by the appropriate NCP.

Protocol extendibility: Over the years, the IETF extended PPP through a number
of additional RFCs that define features like common data authentication
services and encryption capabilities for security and compression algorithms.
For example, with many WAN technologies, compression algorithms are chosen
according to the quality of the link. Different technologies use different
compression schemes, introducing multiple layers of compression and
decompression into the network. Running PPP compression at the NCP level
removes these considerations and uses fewer system resources.

WAN service independence: The initial version of PPP was built expressly to run
over HDLC (high-level data link control) networks. Since then, the IETF has
added RFCs that enable PPP to work with every major WAN service now in use
including ISDN, frame relay, X.25, Sonet and synchronous/asynchronous HDLC
framing.

The Need for MLPPP

For all its strengths, PPP has one inherent limitation when it comes to network
deployment: it is designed to handle only one physical link at a time. MLPPP
does away with this restriction. MLPPP is a higher-level data link protocol that
sits between PPP and the network protocol layer. It accommodates one or
more PPP links, with each PPP link representing either a separate physical WAN
connection or a channel in a multichannel switched service, such as ISDN or
frame relay.

MLPPP's ability to combine multiple lower-speed links into a single, higher-
speed data path is often referred to as WAN-independent or packet-based
inverse multiplexing (see “WAN Independence” below). Packet-based inverse
muxing isn't new; for instance, ISDN vendors have been offering ways to
combine multiple ISDN 64Kbps B channels for some time. But up to now, these
solutions have been proprietary: vendor and technology-specific. MLPPP



embodies a standard approach that cuts across vendor and WAN technology
lines.

MLPPP negotiates configuration options the same way as conventional PPP.
However, during the negotiation process, one router or access device indicates
to the other communicating device that it is willing to combine multiple
connections and treat them as a single physical pipe. It does this by sending
along a multilink option message as part of its initial LCP option negotiation.

Once a multilink session is successfully opened, MLPPP at the sending side
receives network protocol data units (PDUs) from higher-layer protocols or
applications. It then fragments those PDUs into smaller packets, adds an
MLPPP header to each fragment and sends them over the available PPP links
(see Figure 1). On the receiving end, the MLPPP software takes the fragmented
packets from the different links, puts them in their correct order based on their
MLPPP headers and reconverts them to their original network-layer PDUs.

Figure 1. The Multiprotocol Link

MLPPP is independent of the actual physical links and the WAN services that
run over them. This means MLPPP traffic can traverse a mix of physical and
logical connections from multiple WAN services—a frame relay virtual circuit,
multiple ISDN channels and an X.25 connection, for example. MLPPP functions
as a logical link layer that dynamically adds or removes links between two
communicating devices as bandwidth needs change. The MLPPP standard does
not dictate how traffic is balanced over these member PPP links, leaving
network managers free to determine how to use the available links or channels.

MLPPP's ability to combine separate PPP links into one logical data pipe is one
of the most important features of the protocol. It allows additional WAN
bandwidth or new WAN services to be added as needed without disrupting the
existing WAN infrastructure. With MLPPP, different WAN services such as ISDN,
frame relay and ATM can be used together. For instance, a network manager
can establish a frame relay connection to serve as the primary link between a
central site and a branch office, with ISDN serving as an adjunct when
bandwidth demand rises (see Figure 2).

Figure 2. Many Circuits, One Pipe

Through the dynamic addition and deletion of PPP links, MLPPP enables
dynamic bandwidth allocation, or “rubber bandwidth”, between two peer
systems. During the LCP option negotiation, all PPP links in an MLPPP group
identify themselves as belonging to the same group or bundle. To add a new
link or WAN service to the bundle, all that's required is attaching the

https://secure2.linuxjournal.com/ljarchive/LJ/065/3149f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3149f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3149f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3149f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3149f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3149f2.jpg


appropriate MLPPP group identifier to the link. Likewise, when a member PPP
link is terminated, it is automatically removed from its parent MLPPP bundle by
eliminating the identifier.

PPP is WAN service-independent, so the member links of an MLPPP bundle can
be associated with either permanent virtual circuits (PVCs), which have fixed
end points, or switched virtual circuits (SVCs), which are dialed up on demand.

MLPPP's ability to create different groups of WAN links produces some
intriguing possibilities for network managers. For instance, they could use
MLPPP to segregate traffic according to the network-layer protocol. This
approach would enable network managers to separate expedited control
messages from normal data traffic or to queue data into separate MLPPP
bundles based on application-specific requirements.

Here's an example of how MLPPP's segregated packet queueing works.
Suppose a central site is connected to a remote site via two 64Kbps frame-relay
links and two ISDN basic-rate interface (BRI) connections. Two types of traffic
traverse these links: IP traffic from UNIX operations and DECnet traffic from a
Digital Equipment Corporation VAX network. If the frame relay and ISDN
channels are treated as one MLPPP bundle, both traffic types have access to
the full bandwidth of the link at any given time.

The single-pipe approach makes for easier network management, but it could
create problems if one traffic type starts dominating the pipe. In this example, if
the UNIX IP traffic started bursting beyond 60 percent of the overall link rate, it
would begin to eat into bandwidth available for DECnet, slowing performance
for users on the VAX network.

With MLPPP, this problem can be avoided. The network manager can not only
combine various physical interfaces to create one large pipe, but also allocate
channels within that virtual pipe. For instance, the network manager can create
two 128-kbit/s MLPPP bundles, each consisting of a single ISDN B channel and a
64Kbps frame-relay link. Those bundles could then be dedicated to each type of
traffic.

Spoofing

One big problem with using routers for switched WAN services isn't activating a
link, but shutting it down when data transfer is done. Most LAN protocols and
client-server applications are chatty, carrying on almost incessant messaging to
synchronize routing databases and maintain client-server sessions.

Left unchecked, these processes can keep an ISDN link up indefinitely without
passing a single byte of application data. Needless to say, all this uptime quickly



adds up, especially where charges are based on call duration. Considering that
more than 35 percent of WAN costs are related to line costs, the ability to
control activation and deactivation of member links in an MLPPP group is
crucial.

MLPPP offers two solutions: usage thresholds and spoofing. In the usage
threshold scheme, once a circuit becomes idle or the traffic it carries falls below
a level predefined by the network manager, MLPPP will automatically remove
that circuit from its bundle until demand rises. The problem with the usage
threshold approach is that it can be difficult to define threshold levels
effectively in bursty environments using chatty protocols. For example, in
Novell IPX environments, it can be difficult to gauge the requirements of SAP
(service advertising protocol) and RIP (router information protocol) messages.

Spoofing helps address this problem. It is a technique used by routers to filter
network traffic. Spoofing keeps unnecessary traffic like session keep-alive
messages from traversing the WAN link. Rather than sending these messages
over the WAN, the router acts as a proxy and responds to them locally. Once
the router takes over the polling and responses for the application, the WAN
link can be shut down until it is truly needed.

WAN Magic

MLPPP's WAN service independence means users and network managers can
be insulated from network service changes. As new WAN services, such as
frame relay and ATM become available, MLPPP can be used to incorporate
them into logical bundles. To routers, MLPPP looks like a data link protocol; the
router doesn't have to deal with the complexity of the various physical
connections and switched circuits that MLPPP draws together in its logical
pipes. This helps reduce router reconfiguration costs, since a new router
interface isn't required when a new WAN service is added.

To network managers, the difference between adding a new circuit or virtual
circuit to an MLPPP bundle and adding a router interface is significant. Adding a
circuit to a preexisting MLPPP logical pipe is transparent to the network,
particularly in switched environments like ISDN, frame relay or ATM. It simply
adds bandwidth to the pipe; no additional interfaces or path information is
required. In contrast, any change to a physical router interface triggers an
update to the routing table of every router involved in the change. In
environments where circuits are frequently activated and deactivated, this
could generate excessive amounts of network topology changes and much
extra work for network managers.



Not only can MLPPP save network managers time and effort, but it also offers
an important tactical tool for network designers. It can be used to simplify fault
management and build redundancy into the network at low cost.

Keeping Up with ATM

Along with making use of WAN services already in place, MLPPP is positioned to
work with technologies just making it to the real world. The most prominent of
these technologies is ATM.

ATM SVCs can be activated and deactivated on demand, much like ISDN
circuits. ATM circuits can be included in an MLPPP circuit group as more
bandwidth is required. Bundling will become especially useful if lower-speed
ATM ports (T1 or T3) become widely deployed.

In the long run, as ATM takes over the enterprise network backbone, things
could get more complicated. ISDN, frame relay and ATM will dominate the WAN
landscape, with ISDN and frame relay functioning as a feeder technology and
ATM serving as the enterprise backbone aggregating ISDN and frame-relay
circuits over faster pipes. An ATM pipe at Sonet OC3 speed (155Mbps) can
aggregate more than 2,400 64Kbps ISDN B channels.

That is a large amount of bandwidth by today's standards, but thanks to the
rise of LAN switching and high-speed LANs, aggregate throughput
requirements for the LAN will escalate at an even more rapid rate, reaching
tens of gigabits per second in the next few years. To reduce the disparity
between the LAN and WAN worlds, network managers will need to aggregate B
channels and frame-relay circuits. Inverse multiplexing using MLPPP offers a
flexible way to do this.

PPP Plus

MLPPP delivers some key functions to help network managers build multi-
protocol enterprise networks. Here are some of MLPPP's strongest selling
points:

Mix-and-match WANs: With MLPPP, net managers can configure multiple
physical links and virtual circuits as one logical pipe, using different WAN
service types (ISDN, frame relay, X.25 and ATM) in the process.

Bandwidth on demand: Circuits can be activated and added automatically to a
logical pipe when more bandwidth is needed, or if one of the links in the logical
pipe fails.



Big protocol tent: MLPPP handles routing for all major network- and transport-
layer protocols, including IP, IPX, Netbios, DECnet and SNA.

Network negotiation: MLPPP has inherited PPP's ability to negotiate
configuration options between communicating devices. This means two end
systems can set the terms of transmission without requiring manual
intervention.

No traffic, no link: MLPPP uses LAN protocol spoofing to keep unnecessary
network traffic, such as session keep-alive packets, from traversing the WAN.

WAN Independence

The two basic types of inverse multiplexing are circuit-based and packet-based.
Under the circuit-based scheme, a data stream is sliced into equal portions,
regardless of its contents, with each portion transmitted over a different
available circuit. With circuit-based inverse muxing, synchronization of traffic
streams is generally handled by hardware.

Packet-based inverse multiplexing is a software-based process. In this scheme,
packets are distributed among available circuits according to rules or policies
that govern allocation of traffic across circuits. These rules can include
segregation according to protocol or percentage-based prioritization. The
multilink point-to-point protocol (MLPPP) uses packet-based inverse
multiplexing.

One key difference between the two approaches is that packet-based inverse
multiplexing schemes can handle multiple circuit types, while circuit-based
schemes cannot. With MLPPP, for example, a synchronous 56Kbps X.25 link can
be bundled together with a 64Kbps ISDN B channel to create a single logical
pipe offering 120Kbps of bandwidth. This bundling ability extends to the full
range of available WAN services, including dial-up analog lines, switched
56Kbps services, frame-relay connections and T1 or T3 services.

Another difference is that packet-based inverse multiplexing is seamless to the
destination router or end system. In the case of MLPPP, the flow of data
appears consistent by means of software synchronization of MLPPP fragments.
In contrast, circuit-based inverse muxing requires the receiving device to stop
data flow until all bonded channels are characterized for latency. This is the
only means by which the hardware-based solution can ensure data is received
in the correct order.

Except for applications that require constant bit rate transmission or have strict
requirements on circuit latency, software-based solutions are generally
regarded as superior because they add considerable value and flexibility to the



basic inverse muxing function. In the case of MLPPP, users are able to combine
different WAN connections while taking advantage of PPP's configuration
negotiation and multi-protocol routing support.

This article was originally published by Data Communications and can be found
on the web at http://www.data.com/tutorials/multilink_ppp.html.

George E. Conant is a cofounder of Xyplex Inc. (Littleton, Mass.), a maker of
internetworking products.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Netscape Plug-Ins

Larry Hoff

Issue #65, September 1999

Extending Netscape's ability to handle additional file formats. 

Plug-ins are a powerful mechanism for extending the capabilities of Netscape's
web browser. Using plug-ins, the browser can display files in formats that were
not even conceived of when the browser was developed, such as multimedia
files embedded within larger web pages. This allows web pages to be designed
with maximum visual impact. Like any powerful technology, plug-ins can easily
be misunderstood or misused. This article will explore when Netscape plug-ins
might be appropriate to use, explain how to install and remove plug-ins,
suggest where to locate useful plug-ins, and provide insight into implementing
your own plug-ins. 

Plug-ins vs. Helper applications

It might be useful to compare and contrast plug-ins with helper applications.
Plug-ins and helper applications share many features and may be used
interchangeably in many circumstances. Helper applications are older and may
be more familiar to users than plug-ins. Netscape has supported helper
applications since version 1.0 of their browser software, but plug-in support did
not show up until version 2.0 (version 3.0 for UNIX).

Both helper applications and plug-ins are supplementary software used by web
browsers to handle specific file formats. Helper applications can be run
independently of the web browser. Plug-ins, however, are integrated into the
browser and can be run only within a browser. Potential helper applications
may already be installed on your system. Some very useful helper applications,
such as xv, were developed even before web browsers became popular.

Helper applications, being independent of the browser, must create their own
window for a user interface. Plug-ins may use the window provided by the
browser. Since they share the browser window, they can be used to display files

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


that are embedded within larger HTML files. Helper applications cannot display
embedded files. Plug-ins can have access to file contents while the file is being
downloaded by the browser. Such plug-ins are called “streaming” plug-ins.
Helper applications are “launched” only after the file is fully downloaded.

Review of MIME

The MIME (multi-purpose Internet mail extensions) protocol, described in
RFC-1521, allows applications to exchange different types of files on the
Internet. A text header identifies the data format of the message body. Web
browsers use MIME information to categorize files before displaying them. For
example, if the MIME header indicates the body is of type “image/gif”, the
browser will display the message body as a GIF (Graphics Interchange Format)
file. If no MIME header is available, the browser assigns a MIME type to the file
based on the file's extension. Once the MIME type of the file has been
determined, the browser searches its internal tables for the plug-in or helper
application assigned to that MIME type.

When to Use Plug-ins

As a web surfer, you may encounter HTML pages that have other files
embedded within them. Without an appropriate plug-in, your browser will not
be able to display the embedded file. It might seem impolite for a web-page
designer to create a page you cannot display without specialized software, but
there are some reasonable excuses for such behavior. For example, certain
non-proprietary MIME types are in common use on the Internet, and are
supported by Netscape on the Mac OS and Windows, but not UNIX. UNIX users
must install a plug-in for such MIME types. One example of this type of file is
MIDI (musical instrument digital interface); these are often embedded within
web pages to provide background music.

As a web designer, you may want to use a newly developed multimedia file
format on your web page. The current MIME type may have been developed
too recently to be supported by existing browsers. The MIME protocol is
designed to be extensible. Third parties are constantly developing new MIME
types with specialized functionality. Examples of such MIME types include
document rendering (application/pdf), portable graphics (image/png), vector
graphics (application/shockwave-flash) or streaming audio (audio/pn-realaudio-
plugin). Often these MIME types are developed in the hope of selling authoring
software. Polite third parties provide free plug-ins for as many platforms as
possible. Unfortunately, UNIX support is often the first to be sacrificed.

It may be tempting to invent new MIME types, rather than using existing
functionally equivalent MIME types, or to embed specialized file types on your
web page, such as Microsoft PowerPoint files. However, your viewers might not



have an appropriate plug-in or may be unable or unwilling to locate and install
one. Your carefully designed web page may have dull gray rectangles where
you expect flashy graphics. It is generally a good idea to use only the most
popular Internet MIME types on your web pages. If your needs can be met only
by using a more specialized MIME type, it is polite to first check for plug-in
availability or even supply the necessary plug-ins yourself.

Where to Get Plug-ins

Many sources are available for Netscape plug-ins. Netscape maintains a web
site of plug-ins organized by functionality or platform (see Resources 1 and 2).
Netscape equips their browsers with a special plug-in called the “Default
Plugin”, which is invoked when an unregistered MIME type is encountered. With
user approval, the default plug-in will search the Netscape web site for
appropriate plug-ins.

The Netscape web site is not the only source of plug-ins, although it may be the
most convenient. Traditional sources such as Usenet newsgroups, WWW
searches and even word of mouth can turn up useful plug-ins.

Be aware, however, that the same precautions should be used when
downloading plug-ins as when downloading any other software. Although plug-
ins are not full-fledged application programs, they can inflict just as much
damage, intentionally or not. Unlike helper applications, plug-ins can cause the
browser to leak memory, become unresponsive or even dump core. If the
source code is available, you could inspect the code before compiling the plug-
in yourself. Otherwise, you will have to trust the source of the plug-ins. Just
because a plug-in is registered with Netscape's web page does not mean that
Netscape provides any sort of warranty about the behavior of the plug-in.

How to Install and Remove Plug-ins

Plug-ins are dynamic code modules, native to the platform on which the
Netscape client runs. For example, Windows plug-ins are DLLs and UNIX plug-
ins are shared object libraries. When Netscape Navigator starts up, it checks for
plug-in modules in certain directory trees. Each plug-in candidate in the
directory tree is loaded, its capabilities determined using the plug-in API
(application program interface), then unloaded. Internal tables assign MIME
types to particular plug-ins. Later, if the browser encounters a MIME type that
requires plug-in support, the plug-in is reloaded and remains loaded until the
page is closed. The list of registered plug-ins can be viewed using the “Help/
About Plug-ins” menu. Removing a plug-in is as simple as deleting the shared
library.



The README file which comes with Netscape Communicator for UNIX explains
the algorithm for generating the plug-in list:

if($NPX_PLUGIN_PATH environment variable is set)<\n>
   Look at $NPX_PLUGIN_PATH, where
   $NPX_PLUGIN_PATH is a colon-delimited
   list of directories.
   else
   Look at all the following directories in
   order, overriding previous entries in case of
   duplicates:
      /usr/local/lib/netscape/plugins
      $MOZILLA_HOME/plugins
      $HOME/.netscape/plugins

The algorithm for Netscape 3.0 is even simpler. Only the directories /usr/local/
lib/netscape/plugins and $HOME/.netscape/plugins are checked. 

Only one plug-in or helper application can be assigned to each MIME type.
These assignments are stored in the files $HOME/.mime.types and
$HOME/.mailcap where they can be used by other applications. A dialog
window allows users to resolve conflicts. For Netscape 3.0, the dialog is under
the “Helpers” tab of the “Options/General Preferences” pull-down menu. For
Netscape 4.0, the dialog is available via the “Edit/Preferences/Navigator/
Applications” menu option. This menu also allows the user to associate file
extensions with MIME types. Normally, the plug-in associates file extensions
with MIME types when the plug-in is assigned to the MIME type.

Creating Plug-ins

You might have an idea for a great new Internet file format, but are wondering
how to get Netscape to recognize it. You could be a web surfer whose favorite
web site uses a file format unrecognized by Netscape or any of the available
plug-ins. Or, you may just want to understand more about how your web
browser works. In any case, the next few sections will briefly describe the
process of designing and implementing your own plug-in.

First, a reminder about helper applications. If the file is not embedded within
an HTML file, a helper application could also be used to display it. Helper
applications are developed using traditional means, do not need to adhere to
any special API, and do not require special debugging techniques. Even if your
ultimate goal is a plug-in, it might be more efficient to first implement a helper
application, then convert the helper application to a plug-in.

Once you have decided to build a plug-in, you will want to download Netscape's
plug-in SDK (software development kit) (see Resources 3). The plug-in SDK
includes documentation, example code and even a template plug-in, written in
C, complete with Makefile. The SDK documentation includes a complete
reference manual for the plug-in API, and some general guidelines for plug-in



design. Rather than duplicate that information here, I will explore how to use
the API most effectively.

The Netscape SDK is designed to facilitate cross-platform development. The
SDK allows developers to use a single source tree for UNIX, Windows and Mac
OS plug-ins. However, there are significant hurdles for the cross-platform plug-
in developer. Different GUI standards, OS standards and device interfaces must
be considered. Even the plug-in file format varies by platform. For
example,Windows plug-ins must have names beginning with “np” and provide
descriptive information via a version resource, rather than the API. I will skirt
around the thorny issue of cross-platform development by focusing on UNIX-
only plug-in development.

The API

The plug-in API consists of two sets of functions. The first set, where the names
begin with “NPP_”, are functions that the plug-in must implement. These
functions will be called by the browser as it downloads the file. The second set,
with names beginning with “NPN_”, are services which the plug-in may ask the
browser to provide, such as allocating and freeing memory, reading and writing
URLs, providing version information and writing messages to the browser
status field.

There are more than a dozen “NPP_” functions. The thought of implementing
such a large set of complex functions may seem scary. To demystify the API,
these functions can be broken down into a few general categories. There are
functions that allow the plug-in to describe its capabilities
(NPP_GetMIMEDescription, NPP_GetValue), initialize and finalize data structures
(NPP_Initialize, NPP_Shutdown, NPP_New, NPP_Destroy), write into a graphics
area (NPP_SetWindow) and receive data (NPP_NewStream, NPP_Write,
NPP_WriteReady, NPP_StreamAsFile, NPP_DestroyStream). There are also
functions that allow the plug-in to enable LiveConnect (NPP_GetJavaClass) and
to describe its graphics area to a printer (NPP_Print).

UNIX plug-ins must implement NPP_GetMIMEDescription. This function returns
a semicolonseparated-list of MIME descriptions. Each MIME description
includes the MIME type, the file extensions associated with that MIME type, and
a brief description of the MIME type. NPP_GetValue returns the name of the
plug-in, as well as a detailed description of the plug-in.

NPP_Initialize and NPP_Shutdown are called just after the plug-in is loaded and
just before the plug-in is unloaded, respectively. These functions give the plug-
in the opportunity to allocate and initialize global data structures, then free any
allocated resources when they are no longer needed.



NPP_New and NPP_Destroy are called to create or destroy a particular instance
of the plug-in player. More than one embedded file may have the same MIME
type on a single HTML page. The plug-in may need to maintain separate data
structures for each instance. When a plug-in instance is created, the browser
provides environment information, such as whether the plug-in is embedded or
full page, and whether there are any special directives within the HTML
<EMBED> tag. However, the browser will not provide a graphics area or the file
contents to the plug-in instance until after the instance has been successfully
created.

NPP_SetWindow provides the plug-in with a graphics area to draw in. UNIX
plug-ins are provided with a Motif Drawing Area widget. The plug-in may draw
directly into the graphics area using X Window System functions, or it may
create new widgets, using the Drawing Area widget as the parent. Note that
because of the two-phase widget deletion scheme of X, the plug-in must not be
linked with any widget library. Otherwise, X may try to execute the second
deletion phase after the plug-in (and the widget library) has been unloaded,
resulting in a core dump. The plug-in must use only widget classes already
linked into the browser. For Netscape, this means Motif widgets.

The browser uses the functions NPP_NewStream, NPP_Write, NPP_WriteReady,
NPP_StreamAsFile, and NPP_DestroyStream to negotiate with the plug-in about
data transfer mechanisms. The plug-in can elect to receive the data piecemeal,
or the plug-in may ask the browser to collect all the data into a file before
delivering it. If the data arrives piecemeal, the plug-in can set upper limits on
size and rate for data transfer from the browser.

The function NPP_GetJavaClass allows the plug-in to enable LiveConnect.
LiveConnect is a technique for plug-ins to interface with Java and JavaScript.
LiveConnect allows JavaScript to control the execution of a plug-in. LiveConnect
requires a special Java class to be loaded and executed. For many plug-ins, this
may be unnecessary overhead.

The function NPP_Print allows the plug-in to describe itself, in a platform-
specific manner, to a printer. For UNIX, this means writing PostScript to a file.
Full-page plug-in instances are given a choice of whether they would like to
handle all aspects of printing or whether the browser should handle most
aspects. Embedded plug-in instances have no choice. The browser will query
the user about print destination, page size and orientation, etc. The browser
will then open a file and begin writing its own PostScript. When the plug-in
instance is encountered, the function NPP_Print is called. The browser passes in
parameters reminding the plug-in instance of its location on the page and
providing the plug-in instance with a FILE pointer to add its PostScript. When



NPP_Print returns, the browser continues to add PostScript to the file, then
closes the file and sends it to the print destination.

If the plug-in does not add any PostScript, there will be a blank area in the plug-
in's location on the printed page. Plug-ins that display still graphics should
probably implement this NPP_Print. Plug-ins that display animation or which
play sound may choose not to implement NPP_Print. This function will be called
in response to a user selecting either the “File/Print” or the “File/Save As” menu
option, then selecting PostScript as the output format. Needless to say, this is
not a trivial function to implement properly. Even the PDF plug-in from Adobe
contains a flaw which causes a core dump when using the “File/Save As” menu
option. It may be better to omit this feature, rather than implement it poorly.

Design Issues

The SDK documentation advises against “blocking” any API call. The browser
will not be responsive to user input while the API calls are executing. Therefore,
these functions should complete in a reasonably short period of time. If a plug-
in needs to perform time-consuming processing, a number of techniques can
be employed. The best technique to use depends on a number of factors,
including the nature of the plug-in as well as personal preference.

One popular technique is for the plug-in to create a completely separate
“companion process”. This solution can be quite robust. A catastrophic failure
in the companion process will likely not affect the browser. However, elaborate
interprocess communication mechanisms may be needed to provide
synchronization between the browser and the companion process. This
technique is most appropriate if the processing is only loosely connected to the
browser. It is also often the easiest technique for converting a helper
application into a plug-in.

Alternatively, the plug-in could use time-slices within the browser to accomplish
its processing. The plug-in can use the NPP_WriteReady function to limit the
data transfer rate from the browser. With the data rate limited, the plug-in can
perform the processing within the NPP_Write function without degrading
browser performance. For example, a streaming video plug-in might limit the
data transfer rate to the frame rate. Each time the browser invokes the
NPP_Write function, the plug-in would need to process only one frame's worth
of data before returning control to the browser. This technique is most
appropriate for streaming plug-ins.

The X event processing loop can also provide processing time-slices. The X
event processing loop acts much like the scheduler in a cooperative
multitasking operating system. It can be commanded to perform small
processing tasks during idle times, or after specific time intervals via the 



XtAppAddWorkProc and XtAppAddTimeOut functions, respectively. This
technique is most appropriate for plug-ins with interactive graphics, especially
animation.

Finally, the plug-in could create a separate, asynchronous thread within the
process. Thread programming can be difficult. Many UNIX libraries, especially
graphics libraries, are not thread-safe. The plug-in designer must use care to
avoid reentrancy problems. This technique should be reserved for situations
where none of the previous techniques can be used.

Plug-ins can be difficult to debug. The browser does not load the plug-in until
just before executing the plug-in functions. This does not leave much
opportunity for a debugger to set breakpoints. It may be necessary to resort to
using printf. One technique for using a debugger is to insert an artificial delay in
a convenient location, such as at the beginning of NPP_Initialize. The delay can
give a debugger time to “attach” to the browser. Once the debugger is attached,
breakpoints can be set within the plug-in.

Conclusion

Netscape plug-ins can enhance the web surfing experience. After all, it is much
more fun to experience creative multimedia than it is to see dull gray
rectangles. Linux plug-ins are available for many commonly used MIME types;
some require compiling, others are available as shared libraries, simplifying
installation. Implementing plug-ins for unsupported MIME types is well within
the capabilities of an experienced Linux programmer and can be fun. The
source code for the UNIX MIDI plug-in (UMP) is available on the UMP download
page (see Resources 4). This source code can be used as a starting point for
other plug-in projects. I glossed over cross-platform development, LiveConnect
support and printing issues. For more information on these topics or any plug-
in topic, feel free to contact me.

Resources

Larry Hoff works for Brookhaven National Lab, where he develops embedded
software for particle accelerator control. He can be reached at hoff@bnl.gov.

Archive Index Issue Table of Contents 

    Advanced search 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3088s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Copyright © 1994 - 2019 Linux Journal. All rights reserved. 



    Advanced search 

Open Source from Applix

Craig Knudsen

Issue #65, September 1999

A look at Applix's open-source initiative—what they are doing and why. 

Applix, Inc. is best known for Applixware Office, a cross-platform suite of
desktop productivity tools. (See review by Dean Staff in this issue.) Founded in
1983, Applix's original goal was to develop and market multi-user graphical
UNIX-based integrated office applications. Since then, Applix has become very
popular among those in the engineering, government and financial sectors.
Applixware became available for Linux in September of 1998. In March 1999,
Applix announced its first Open Source initiative with SHELF. 

The Extension Language Facility (ELF) enables developers to integrate
applications and corporate data with Applixware Office. For example, all user
interfaces for the Applixware applications (Words, Graphics, Spreadsheets,
Presents, Mail and Data) are all built with ELF. SHELF (SHared ELF) is the open-
source release of the ELF developer tools including Applix Builder, an object-
oriented, graphical IDE (Integrated Development Environment) released under
the GNU Library General Public License (LGPL). (See Figures 1 and 2.)

Figure 1. Applix Builder Screen

SHELF can be used to rebuild the ELF shared library which is used by newer
versions of Applixware. This allows you to extend ELF's capabilities and take
advantage of those changes from within Applixware.

Like Java, ELF is a platform-independent language that does not need to be
recompiled on each platform. In general, ELF applications execute slower than
C or Java. Computation-intensive functions are best implemented as C add-ins
to ELF. ELF's loose type checking is an advantage in smaller applications, but
can become a disadvantage for large-scale applications. Unlike C, ELF is fully
memory-safe and includes error signalling. Developers are free to focus on

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/065/3574f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3574f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3574f1.jpg


algorithms and the user interface rather than memory management. ELF also
provides simple and robust interfaces to relational databases.

Applix is hoping ELF will become a popular language for layered applications
and lightweight application-building where development cycles are measured
in person-days to person-months. They do not anticipate ELF displacing C++ or
Java. However, ELF's strengths could help find it a strong developer community.

Figure 2. Application Class Screen

Asked how Applix intends to generate developer interest in ELF, Richard Manly,
Director of Product Management and Marketing for Applix, said customers will
be doing this in two ways:

The first is to create a series of SHELF applications
which will be offered in Open Source that will show
developers what can be achieved by using the SHELF
development tools. The first of these applications will
be the Linux Palm Desktop (LPD), a graphical desktop
application which will enable Palm or Palm Pilot users
to download, view and search their PDA data in a
familiar user interface. By offering the LPD application
in Open Source, developers will be able to use the
interface to extend the use of their data into either
their own programs or into other applications which
run on Linux machines. We'll also offer a link to
Applixware for automatic generation of word-
processing documents, e-mail and spreadsheets.

Thousands of developers have already used ELF as part of Applixware to build a
wide variety of applications. According to Manly, these range from

using ELF to record and play back keystrokes and
mouse clicks to automate often-repeated activities
within Applixware to extending the functionality of the
spreadsheet to additional analytics to full-scale
applications which utilize ELF's ability to integrate with
third-party applications using databases (via ODBC),
sockets, shared libraries and RPC calls and CORBA via
IIOP.

The “Free Stuff!” section of the Applixware for Linux site (see Resources)
contains sample ELF applications such as Solitaire, which can be freely
downloaded. The Linux Palm Desktop application will be posted at the Applix
Open Source Central site. This site will be the focal point for SHELF
development including downloading the SHELF distribution and contributed
extensions. 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3574f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3574f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3574f2.jpg


A variety of books about using ELF are available from Applix's web site. Both
Applixware and SHELF are available for all major Linux distributions as well as
Solaris, AIX, HP-UX, Digital UNIX, Irix, Windows 95/98 and NT.

Applix Linux Division

In June, Applix announced a new division that will work with the Linux and
Open Source software community to source and brand applications. The Applix
Linux Division will also continue to aggressively market, sell and support the
company's Applixware product suite for the UNIX and Linux markets.

Applix is currently growing and recruiting additional developers and marketing
staff for the new division. Asked how the new division will change Applix, Manly
replied,

By being focused on the Linux market, we'll be more
able to respond quickly to the demands and direction
of the Linux user base.

Resources 

Craig Knudsen (cknudsen@radix.net) lives in Fairfax, VA and telecommutes full-
time as a web engineer for ePresence, Inc. of Red Bank, NJ. Craig has been
using Linux for both work and play for three years. When he's not working, he
and his wife Kim relax with their two Yorkies, Buster and Baloo. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3574s1.html
mailto:cknudsen@radix.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux Distributions Comparison

Ellen M. Dahl

Issue #65, September 1999

Distro. summary.

LINUX DISTRIBUTIONS COMPARED

 
Caldera

OpenLinux

2.2

Debian 2.1
Linux

Mandrake 6.1

LinuxPPC

1999,

Release 5

Project

Independence

6.0-0.2

Price $49.95 free $50.00 $32.00 free

Target

Consumers 
CDEHOV CDEHOV EDHOCV CDEHOV DEH 

Kernel 2.2 2.0.36 2.2.9 2.2.6 2.2.10 

Binary Format      

Primary/Other ELF 
ELF libc6;
libc5 for

compatibility
ELF ELF ELF 

Hardware
Required 

     

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Minimum

Install 
386, 8, 40 

4MB, 100MB
HD, 386 

i586/50Mhz,
8MB, 350MB 

16MB
RAM,

100MB
disk 

250MB disk 

Minimum Use 

386,8,40 as
server;

486,32,300
as

workstation

4 MB, 100
MB HD, 386 

i586/100Mhz,
16MB, 400MB 

64MB/
350MB

disk 
16MB RAM 

Recommended

Use 
Pentium,
64, 1000 

8MB, 16 w/X,
500MB HD,

Pentium

i586/200 Mhz,
64MB, 900MB 

1GB
(50MB for

swap
space) 

32MB RAM 

Packaging      

Package

Format 
RPM .deb RPM RPM RPM 

Source Code

Packages 
yes yes yes yes yes

Management

Interface 

X,
command

line, Lizard,
COAS, KDE

dselect/apt 
kpackage,
GnoRPM 

X,
command
line, pdisk 

GnoRPM 

Group/

Subgroup

Packages 
yes

classification,
3rd party

yes yes yes

Boot Media      

Boot Floppy

included 
yes yes no no no 



Boot images to

select from 

module-
based, no

limit 

2 for i386;
diff for other
architectures

9 n/a 2 

Floppies

required
none 

none from
CD; 1 or 2 if

CD not
bootable; 2

from
network

FTP, NFS, HTTP
installs,PCMCIA

none 1 

Run from      

CD-ROM only no yes yes yes no 

CD-ROM

mostly 
yes yes yes no no 

Configuration      

Custom X yes yes yes yes yes 

Network yes yes yes yes yes 

SLIP/PPP yes yes no yes yes 

User/Group yes yes no yes yes 

Filesystem yes yes no yes yes 

Printer yes yes yes yes yes 

Runlevel/init yes yes yes yes yes 



Install      

PCMCIA

Ethernet 
yes yes yes yes yes

PCMCIA CD-

ROM 
no yes yes yes yes

from CD-ROM yes yes yes yes yes

from Floppy yes yes yes no no 

from FTP no yes yes yes yes

from local

filesystem 
yes yes yes yes yes

from NFS yes yes yes yes yes

from Tape no media only no no no 

UMSDOS from

Linux 
no no no no no 

UMSDOS from

DOS 
no no no no no 

Media available 
yes/CD-

ROM 
yes 

from HTTP or
Windows (to -o
loop mounted

file) 

yes yes, planned 

Documentation      

Custom

manual

included 
yes 

yes,
electronic

form 
yes 

manual is
on-line 

no 

3rd party

books/manuals 
yes

(manuals) 
yes no yes no 



Extras      

Non-GPLed

extras included 

BRU,
StarOffice,

LISA 

432
packages
available 

over 30 apps
incl. WP 8.0, SO
5.1, IBM Lotus

eSuite DevPack
1.5, QuakeII &
Hopkins FBI

demos 

some
MacOS

software 
N/A 

Support      

Included 

5-incident
e-mail, 5-
incdt/90-

day install

mailing lists,
bug tracking
syst, online

forums

100-day e-mail 
e-mail

installation
support 

none 

Optional 
support

contracts 
3rd-party

only 
nono none none 

      

Special

certifications 

forthcoming
Caldera
training 

- - - - 

Sales method

used 
DFX DF DF DFX F now, D soon

LEGEND  

Target Consumers: C Commercial user D
Developer/Engineer E Desktop/End user H
Hobbyist/Enthusiast O OEM V Value Added

Reseller

Sales Method Used: D
Distributor F Free via

FTP X Direct

Hardware Required: 

Values are CPU, RAM
(RAM for X), Disk



Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Interview: Caldera's Ransom Love

Marjorie Richardson

Issue #65, September 1999

An in-depth interview with Caldera's number one man. 

Ransom H. Love, President and CEO of Caldera Systems, Inc. gave one of the
keynotes at the OpenSource Forum in Austin, Texas on June 30. He talked
about the impact of Linux and Open Source on businesses today. Later in the
day, he graciously gave me some of his time to discuss what we can expect
from Caldera now and in the future. 

Margie: What are your thoughts about today's conference?

Ransom: It's exciting to see a conference focused on Linux in the enterprise.
Just the fact that there is a conference along those lines is quite a vindication, I
guess, that Linux is a valid business alternative which is kind of our say. There
wasn't a large number of attendees, but oftentimes it's not the quantity but the
quality of people looking and the jury is still out on exactly what that means as
far as ongoing businesses and relationships.

Margie: Do you think they will go away believing Linux is the answer?

Ransom: Well, you know, as far as the information that has been presented, I
think it's been very solid, very focused, very good information. All the feedback
I've gotten from everybody in the conference has been very solid. I don't know
that anyone is going to be convinced, but I think they are going to walk away

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


and begin to evaluate. That's all you want to achieve; if they can begin that cycle
of evaluating, that's all you need. You just need your foot in the door, because
Linux works. That's truly the goal and I think the conference has achieved that. I
think attendees were split almost half and half—half had already deployed or
were evaluating Linux, the other half were considering it. I think they will begin
the process.

Margie: On one of the last panels, one of the speakers was saying that Linux
wasn't enterprise-ready at all. You needed to be there to tell him he was wrong.

Ransom: I think the problem is, what does “enterprise-ready” truly mean? Does
it mean having a list of features and functionalities that people want? Does it
mean it's stable enough? Does it mean it's scalable enough? To say “enterprise-
ready” is to say you have given it somebody's definition. To me, it means it
works; it does what it says it does. There is no argument whatsoever that Linux
does what you say it can do. It's solid; it works; integrators and VARS deploy it
as the predominant platform for businesses all over the world. The question
becomes, does it have all the fine tuned options, such as SMP, that other
systems have? Does it have all the high intricate file systems and other such
things? No. But does that mean it's not enterprise ready? No. Because there is
an awful lot of functionality that goes into the enterprise, but what you really
need is something that works.

Margie: Right. In your discussion, one of the attendees asked if Linux is going to
replace NT for the desktop. I liked your answer and I thought you could repeat
it briefly here.

Ransom: Okay, very good. I think the answer to that is the desktop itself has
changed. It's rapidly evolving from just a PC that is monolithic with a lot of
maps and memory, to being broken up. On the software side, the browser itself
is becoming the interface, and more and more applications are being served
down to the desktop from a server environment using the Internet protocols. If
that is where the browser is going, then Linux is going to play a major role. Its
small footprint can be remotely managed, it is very stable and all those
applications can be fed to the browser as well as any other platform. It's an
excellent Java platform. So all of these application servers being developed will
feed those types of applications out to a thin Linux environment. And it will play
very, very strongly. Even the new devices, the NCs, and such are coming
preloaded with Linux. Will it replace that large monolithic PC? Maybe not, but
who cares? At that point, Linux will play where it plays well. It will add significant
value in that shift, if the desktop, as well as the server, changes form and comes
into the more economical, more manageable forms we are starting to see.



Margie: You also talked about standards and certifications. As part of your
education courses, you are going to offer certification. Are you doing this in
cooperation with LPI, or is this something you are doing independently?

Ransom: No. As you know, we are a platinum sponsor of LPI and played an
integral role in getting LPI set up, but they are an independent organization. We
want them to be an independent organization, because we want them to
supply an industry standard. So they are creating all the certification testing.
We aren't even going to touch that. What we will provide is the educational
courses necessary to give somebody all the information they need in order to
pass that certification. Our courses are not OpenLinux-specific; they are Linux
and designed to teach someone how to become certified using the LPI
standard. We are working with LPI and contributing, financially and otherwise,
to create this certification. Then, in turn, we are creating the coursework that
can bring someone up to the knowledge they need to pass those tests. So you
get the benefits of all those. LPI certification, open source, you can go through
them and do the tests yourself, but if you want some assistance, we can
provide you with literally 20 different courses that can get you trained and
educated so that you can feel comfortable taking and passing those test suites.

Margie: And they are all Linux in general, not Caldera-specific?

Ransom: Yes, Linux in general. We feel it is critical that the standard be Linux. A
Linux-certified engineer means a heck of a lot more than being a Red Hat or
Caldera or SuSE engineer. For businesses, for certification of an individual to
have any kind of meaning, that certification must have a lot of credibility. So
that has been our focus with education from the beginning. We're very excited
about the potential of LPI rolling out certification. The other aspect of that is the
channels to deliver that education, because many corporations are worldwide,
so they need to have educational coursework worldwide. Our announcement
last week with IBM where they are going to roll these courses out through all of
their educational training centers is a significant and unique announcement in
this industry. So we are very excited about the potential of that, because now,
corporations and VARs and integrators worldwide can deploy solutions and be
able to get people educated, trained and supported. Another aspect of that
announcement is IBM is doing worldwide support of OpenLinux—now we have
the mechanism to deploy solutions globally.

Margie: I thought that was surprising too, because everybody thought IBM was
just working with Red Hat.

Ransom: No, and the relationship with IBM is significant—let me make this
clear—not because they are playing favorites. They literally are playing with all
Linux providers. But because of our business model and our focus on business,



many aspects of the things we are doing match up on a broader scale for what
IBM wants to do. Thus, you'll see more and more relationships with us. Anyone
else could step up and offer the same things if they had the same focus and
business model as we do. Again, this is just a confirmation of our focusing Linux
for business in the match you see now forming with IBM as we roll forward.
And you'll probably see that with other companies as well, on that same level.

Margie: We received a good response to our article on standards in the June
issue. In particular, your part of it, because you were willing to say more than
anyone else. You dominated the conversation, people liked it, and as a result,
see you as a leader in the Standards drive. Are you just giving it lip service or do
y'all actually have people on the inside working with LSB?

Ransom: Well, Ralf Flaxa, who is actually the head of our engineering team in
Germany, is heading up that whole reference platform, which we feel is a
critical part of that LSB certification. The reason being, because as you agree to
a written specification, you need a proof of concept of that specification—to be
sure it actually works and everyone is happy with that specification. You can
then do re-integrations on the specification to improve and enhance it. We
have freed up Ralf—almost 100 percent of his time is now allocated to working
on the Linux Standard Base to help drive, manage and chair it. He isn't the only
one working on it, but he is the chair and therefore we are trying to free up his
time so that he can, in fact, deliver the reference platform of the standard. In
addition, we have and will continue to provide resources to the Linux Standard
Base group of committees. For example, for their last meeting we did fly a
number of the Debian developers in to attend the meeting, so they could all
come together. We are expending resources in other ways to try to facilitate
and push and help things along. IBM is also doing some wonderful things, now
rallying behind Linux Standard Base and working and collaborating with many
other ISVs. They are looking for ISVs to come in and help put additional
pressure into this area of standards. We are very excited about that. ISVs are
starting to become more vocal about the needs and I think that will help others.
Once people realize that ISVs are serious and the applications need to be there
—it's just a matter of time and momentum—the pressure will bring about
significant movement. One of the reasons why we are so passionate about that
is we have worked with VARs from day one. The VAR channel and system
integrators have been key, because they have a lot of those applications. We
heard about this need a long time ago because of our business focus. That's
one of the reasons we have been so vocal and such a strong advocate of
standards.

Margie: Exactly what is your Linux tour about? Y'all came by and saw us, is that
demonstration pretty much what you are doing everywhere?



Ransom: Well, we actually have three different tours we are doing right now.
One is the “I Develop” tour with Oracle. We are the only Linux distribution going
worldwide to their “I Develop” conference. So, that's been very positive and has
some very good feedback among the developers who are looking to develop
and deploy Oracle solutions and related solutions on top of Linux. We are also
doing the Network Professional Association tour, where they are touring the
country meeting with their affiliate groups and associate groups. They are
doing some significant evangelism, if you will, of OpenLinux and education
especially. They actually helped us develop our latest administration course
that allows someone coming in with an MSVE or CNE background to get the
specific training they need to bring them up to speed on Linux. They actually
helped us develop that course, so they are out there helping us evangelize it
through the Network Professional Association. Our more significant tour is
called the OpenLinux tour. Ziff-Davis helped us host it through their
conferences and that side of their business. We've coordinated the city-to-city
tour ourselves, and IBM and Oracle are co-sponsors. We've gone to eight cities
already and we will be going to another seven cities as part of that first phase.
That has been very, very successful. We obviously are targeting VARs and
system integrators in each of the cities, and we have had an excellent response.
The VARs are very enthusiastic about the fact that IBM and Oracle are very
serious about Linux. That gives it some validity and our experience with the VAR
and integration channels has a very strong appeal. We know what the VARs
want and how to help them drive solutions on Linux. So we are pleased with
the response.

Margie: When you came by to see us, you showed us Caldera's new easy install,
Lizard. Tell us about that.

Ransom: That was when we were actually rolling out our 2.2 product and the
first part of Lizard. We will have some exciting announcements coming up here
as we get ready to open source it. We don't want to just throw it out there. We
literally want it to be an interactive development kind of thing, so that it can
literally be a standard in Linux. So we are creating an entire open-source site,
so that developers can interact with and maintain and keep it up. A lot of our
open-source projects are going to be moving on to that site and into electronic
format with more of a developer focus to give the support and the ongoing
maintenance of the technology an opportunity to be very successful. There is
an announcement that will be coming out soon. So that's what we are doing.
It's not just a matter of simply publishing the source; we could do that. We truly
want it to be published in a way that is meaningful, so that developers can get
the information they need and good access to the technology. We are doing a
little more work there.

Margie: Is there a date when this might happen?



Ransom: It's coming very soon.

Margie: Very soon, okay, that will do. How about new features that are as
exciting as Lizard? Do you have any of those coming up in the next release?

Ransom: Well, obviously, Lizard was the first integration of the product, so
there are a lot of things we didn't have time to put in the first release that we
are definitely going to see in the second release. We are very excited about the
enhancements we've been able to make to Lizard—additional platforms, other
kinds of things we can drive there, so that's a big improvement. We have been
able to put a lot of other things into the product—things like unattended install.
Lizard is a wonderful thing for a one-time install, but many of our VARs,
integrators and the major OEMs want the ability to basically install once and
have it replicated across many units. So that's an aspect we are putting into this
next product. We have a few more commercial applications, a few more
upgrades to existing commercial applications and things like that which will be
made available. There are a couple other features, but we are saving them. We
think they are really significant from a business perspective, but we don't want
to let the cat out of the bag too soon.

Margie: Okay, I understand that. KDE is now a part of your distribution. Do you
think the main way to attract people to Linux is to look like Windows?

Ransom: Well, again, we believe in providing Linux as a targeted solution. All of
our research on those people who are buying Linux—we have gathered a lot of
data—tells us that well over 50 percent of the people buying Linux today are
buying Linux and UNIX for the first time. On our city-to-city tour, by the way, a
lot of the VARs—well over 61 percent—are novices when it comes to UNIX; they
don't even know anything about it. The number of people who are moving from
Windows or wanting an alternative to Windows is significant. These people are
evaluating Linux. So what we've done with Linux is target those first-time users
in such a way as to give them an experience that won't send them running
away screaming. They are used to a point-and-click interface and interaction
with the system; they are used to it all being graphical; they are used to a kind
of WYSIWYG-type environment, so we tried to deliver a solution that would
allow them to have a good experience. Now, that doesn't take away any of the
power of Linux. Underneath the covers, it's still Linux. In fact, many of these
things actually appeal to developers, because they give them a more controlled
environment, kind of a single-product environment that they can optimize and
play to their heart's content. Now, you'll see us come out with other products
very soon that are again more targeted, that have a more WYSIWYG first-time
user graphical environment. You will see us come out with a server
environment that won't have a graphical environment, but instead will be in a
browser. It will be browser-based so that the system can be headless and



keyboardless, and you can deploy and manage Linux completely remotely. So
we extend code now to include an entire web interface, not just the graphical
KDE, and that's the next phase you will see very shortly. We believe that for
businesses and VARs and others to get their hands around Linux, we will do a
lot of the packaging and focusing and creating a solution so they can focus on
adding to it. They do not have to manage Linux or sort through all these
different things to get their solution—we give them a basic solution and they
just add theirs to it. What you are seeing is us trying to appeal to the market
and the customers who are now moving in and buying Linux for the first time.

Margie: Last year, Caldera split into two parts. Has that worked out?

Ransom: Yes, actually it has. Well, what do you think about 2.2?

Margie: I like it.

Ransom: Has it worked out?

Margie: Okay, I can't argue with that.

Ransom: Actually, it's been very good. It has allowed a lot of focus on the two
different areas. There is some significant difference between an embedded-
type application and the desktop server or even the non-traditional PC-like
devices that are being broken up. There are differences there, and I think
allowing us to focus down on the two different areas has been very positive for
both sides. The thin-clients group has a wonderful set-top device they've
developed; the browser is highly optimized to achieve the environment. It's a
wonderful platform. We have been able to focus on delivering real solutions
that I think add value, not only to ourselves, but to Linux in general as we
publish Lizard and everything back.

Margie: Is your Linux for Business focus working? With your relationships with
IBM and Oracle, it certainly looks like it is.

Ransom: Yes, and I think more than ever, the proof is in the pudding. What are
you seeing? What type of solutions are we delivering? What type of activities are
you seeing in and around what we are delivering? I think the relationships and
the products—not just OpenLinux 2.2, but the educational products which have
been released and announced, and the many more coming—are the proof in
the pudding. We are actually delivering on our promises and commitments and
getting solutions to the market. People worldwide are recognizing the value of
OpenLinux. It's totally different from any other Linux out there. There really is
no comparison, and yet we are using the same kernels and libraries—do you
see what I'm saying? It is the focus that makes the difference. I think that will



pan out even more in the coming days and weeks and months as more and
more announcements come out.

Margie: So are you seeing an increase in market share?

Ransom: Oh, my goodness! It's fun!

Margie: I'll take that as a yes.

Ransom: Well, again, I don't know that we are taking market share from
anyone, but we are definitely taking the new users who we are targeting. A lot
of them are coming over and taking a look and evaluating. We are definitely
appealing to the VARs and systems integrators worldwide, who we are also
targeting. That's our customer. It's not that it's at the expense of anyone else—I
guess it is in some degree, because we are taking a larger percentage of the
new consumer of Linux.

Margie: Tell us a bit about Caldera's business philosophy.

Ransom: Well, to give you an idea, we kind of believe the kernel and the
underlying infrastructure needs to be and should be open source—there is no
question about it. It adds so much value to the application providers, the
solution providers, everyone, because having an open source allows them to
optimize, customise and deploy solutions more effectively. Where we differ
from some is that we believe there is a role and place for binary-only
applications and solutions or proprietary hardware components—a very
important role. Billions of dollars are spent, you know. We shouldn't run away
screaming, saying that is bad, that is taboo. Because there is significant value in
a solution that the combination has put together to solve a business need that
you may or may not get from a pure open-source model. It may be years; how
do you provide incentives for people to work on some aspects that just aren't
appealing? So there is an element and a need for both proprietary and open-
source software. The models should be used where they make sense, and the
combination which creates the best solution for the customer, the best solution
for the industry and everybody involved. That's where we vary a little bit from
some. We feel very strongly that to solve business solutions, to solve the
customer needs, the best of both worlds is really the right approach.

2.2 is a prime example; we have Power Quest and PartitionMagic, which give a
non-destructive, on-the-fly resizing. Well, we don't have those partitioning tools
yet in an open-source fashion that give you the same level of confidence with
the same level of interface. Why not take Linux with all of its beauty and
functionality and couple it with this? Now, you've created a real solution that a
greater majority of people can use today. So the combination is good.



Another example is Apache/IBM; you have the security aspects of that which
will never be open source. Is that bad? No! The whole nature of the reason it's
not is that it's secure! You can't open source it. So, is that wrong? Is that bad?
No. It has a value, and the combination of the two make perfect sense as a
business opportunity and solution. I'll fight with the best of them on protecting
open standards and maintaining the basic kernel core as open source, because
that's the value of the whole model. But I think we need to develop interfaces
that allow for binary interaction—that it's not just open source and forcing
open source. Another example: we have all these major players coming in, and
we have meetings with nearly all of them. They are very excited about trying to
help Linux move forward. They are looking at publishing technologies that
would take years to develop, just as a good gesture to contribute back to the
community and add value. They want Linux to succeed. But you know what?
There are some aspects they will never publish, nor do they want to, nor does it
make sense for them to do so. Is that bad? No; you get the benefit of all this
technology and all the knowledge, and the customer gets the solutions because
they are all integrated. That's great; let's evaluate each one and not throw up
official barriers.

Margie: Will Caldera be going public?

Ransom: I think it's everybody's dream to go public, especially in the software
industry. Frankly, my major goal for our company is to be a valid, viable
business and let the natural consequences take place from that. There is no
question that we, like every software company on the planet, are preparing
ourselves for the eventuality of doing something bigger, grander and better.
Our model is a little different than others; it's not a rush to get out and be the
first one to do an IPO. That's not the issue. When we do an IPO, we want it to be
a solid business decision with solid business solutions surrounding it that can
sustain an IPO. I guess we are a little bit more conservative in some ways in that
we are going to take the time to forge the relationships, to build the business,
to deliver the solution, so that when we do an IPO, we are doing it to fund the
business and not to buy one.

I think there are many companies preparing themselves for IPOs. I think that is
great. I won't lie to you; we will do everything in our power, but we'll do it when
it's right for the business and we feel we have a sustainable business moving
forward. And we do now, as far as the numbers, we are looking fine, but we are
in a phase of maturation. It's important to see what we look like after we go
through puberty!

Margie: Sounds good. Last question: what did you have for breakfast this
morning?



Ransom: Fruit and oatmeal.

Margie: All right—my favorites. Thank you for your time.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Multicast: From Theory to Practice

Juan-Mariano de Goyeneche

Issue #65, September 1999

Broadcasting over the Internet—a look at developing applications for this new
technology. 

As the Internet grows up, new communication needs arise. First, e-mail and FTP
were enough for most people. Then the WWW arrived and people wanted to
see graphics, not just plaintext. Now, even static graphics are not enough; real-
time video and audio are demanded. 

As communication needs evolve, communication paradigms originally designed
to deal with e-mail and FTP need to evolve too. A new one that has developed is
“multicast”.

The Problem

Imagine transmitting an event over the Internet (perhaps a Linus Torvalds
conference), and multicast is not available. A single source of information,
which could be a computer connected to both the Internet and the video
cameras and microphones Linus is talking to, is transmitting multimedia
streams to several hosts dispersed over the Internet. Of course, traffic should
be sent as efficiently as possible—the less bandwidth used, the better.

With pre-multicast technology, two communication paradigms are available,
both of which are inadequate.

The first one is Unicast. TELNET, FTP, SMTP and HTTP are unicast-based
protocols with one source and one destination. To send to multiple
destinations, different communication paths are needed between the source
and each of the destinations (see Figure 1.a). Therefore, a copy of each audio
and video stream would need to be made and sent separately to each receiver.
Clearly, this is not affordable. Even if you are quick enough in copying real-time
audio and video streams, both your network and the Internet would collapse.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Audio and video are extremely bandwidth expensive. Obviously, TCP cannot be
used in multicast applications, as it is clearly unicast-oriented.

Figure 1.

The second choice is Broadcast. The broadcast paradigm (see Figure 1.b) saves
a lot of bandwidth compared to unicast. If you want to send something to all
computers on your LAN, you don't need a separate copy for each. On the
contrary, only one copy is sent to the wire, and all computers connected to it
receive the copy. This solution is better for our problem but is still insufficient,
as we probably need to broadcast to only some of our computers, not all. Even
worse, it is almost certain that many hosts interested in your conference will be
outside your LAN. While broadcast performs well inside a LAN, problems arise
when broadcast packets are routed across different LANs. Thus, broadcast is
good for applications and protocols that don't need to cross LAN limits (such as
ARP, BOOTP, DHCP and even routed), but it is not good enough for our
problem. Finally, it is very likely people want to have more than one video
conference at a time, when only one broadcast address is available.

The Solution: Multicast

After having looked at the problem, it is apparent we need a solution that
provides the following:

• Allows data to be sent to multiple receivers in an efficient way, avoiding
per-receiver copies.

• Is not constrained by arbitrary network limits, so it can reach anyone,
anywhere on the Internet.

• Differentiates between multiple and unrelated transmissions, so that a
computer may know which ones are of interest for applications.

The third point relates well to radio or TV channels (not cable TV). If you are
interested in a particular channel, you tune your receiver to listen to a
particular range of frequencies and discard the rest. 

The solution that meets all three requirements is multicast. Figure 1.c shows
that host 1 sends data only once (i.e., no per-receiver copies are made) and
only hosts interested in this data (hosts 3, 5 and 6) receive it.

Multicast Addresses

The radio/TV example will remain a good starting point for the rest of the
article. In the same way that multiple frequencies ease the process of
recognizing and isolating different TV channels, multiple multicast addresses
ease the process of recognizing the multicast traffic of interest.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3041f1.jpg


The range of IP addresses is divided into classes, based on the higher order bits
of the IP address. Multicast addresses are class D addresses: those starting with
the first three bits set to 1 and the fourth set to 0. This means multicast
addresses range from 224.0.0.0 to 239.255.255.255. This is the range of
“frequencies” in which you can transmit or listen for traffic. Each “frequency”
identifies a different and specific multicast group.

Some of these multicast addresses are well-known, reserved for a specific
purpose. For instance, 224.0.0.1 is the all-hosts group. Just “ping” this address,
and all multicast-capable hosts on the network should answer. Any multicast-
capable host must join this group at start-up on all its multicast capable
interfaces. 224.0.0.2 is the all-routers group, and so on. In any case, your
multicast applications should never send datagrams to addresses 224.0.0.0
through 224.0.0.255, as they won't be forwarded across multicast routers.
Similarly, you should avoid groups 239.0.0.0 through 239.255.255.255 as they
are reserved for administrative scoping. See the “Multicast over TCP/IP
HOWTO” (included in the Linux Documentation Project) for further details.

Configuring Your GNU/Linux Multicast Box

In order to play with multicast, your GNU/Linux box needs special
configuration. Your kernel must be compiled with IP: multicasting enabled. This
will add support for the IGMP protocol (Internet group management protocol)
to send and receive multicast traffic. If you keep on playing with multicast, it is
quite likely you will need to use your box as a multicast router, as old routers
do not support multicasting. In that case, check the HOWTO for several
additional compile options which must be enabled (i.e., say YES). You will also
need the mrouted application, a daemon which instructs the kernel on how to
forward multicast datagrams when acting as a multicast router (mrouter).

Finally, you need to set a default route for outgoing multicast datagrams.
Assuming the eth0 network interface is to act as that outgoing route (your
application can instruct the kernel to send its datagrams using a different
interface if needed), you'll need to use:

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

Writing a Complete Multicast Application

Now that multicast is defined and your hosts are set up, I will explain how to
write multicast applications while developing one. Its aim is to be both a
didactic and useful tool. The reader needs a basic background in network
programming using the sockets API. UNIX Network Programming by W. Richard
Stevens, Internetworking with TCP/IP Vol. 3 by Douglas E. Comer and the 
setsockopt man page are helpful references.



The idea for the application in Listing 1 came from a popular TV commercial in
Spain: a little boy takes his father's mobile telephone, starts calling numbers
randomly and saying: “Hi, I'm Edu. Merry Christmas!” His father gulps when he
discovers it and, of course, the lesson is how cheap this company's mobile
phone calls are (in Europe, local calls are quite expensive).

Listing 1.

Our program (see Listing 1) will do the same thing: it will send to the multicast
group and port, passed as command-line arguments, the string “Hi, I'm 
name_of_machine. Merry Christmas!” along with the time to live (TTL) of the
message. The program is short and simple, but it is also quite useful. I have
used it several times when configuring multicast networks. You can run it on all
your machines to see whether they are sending and/or receiving traffic. The TTL
is very handy when using multicast routers and/or tunnels, as it makes it easy
to determine the lowest TTL needed to reach a given destination.

The first lines of the program are the usual include statements. I tried to add
comments to point out which functions and/or data structures need them. In
the main function, variable definition and basic initializations are done in lines
27 to 44. Later, we use a dedicated socket for sending (send_s) and another for
receiving (recv_s). These sockets must be SOCK_DGRAM (UDP), as TCP does not
support the multicast paradigm.

Sending Traffic

When multicast was implemented, the sockets layer was extended a bit to
support it. That support came via the setsockopt/getsockopt system calls.

Three of the five new optnames (see the setsockopt man page) were intended
for use when sending data: IP_MULTICAST_LOOP, IP_MULTICAST_TTL and 
IP_MULTICAST_IF. They are all at the IPPROTO_IP level.

If IP_MULTICAST_LOOP is set, all multicast packets sent from this socket will be
looped back internally by the kernel. This way, the rest of the applications
waiting to receive traffic for this group will see it just as if it had been received
by the network card. We are not interested in that behavior for our application,
so it is disabled in lines 65 to 69. By default, loopback is enabled.

The TTL field of the IP header plays a primary role in multicasting. Its original
role of avoiding problems with packets being looped forever due to routing
errors is kept, but a new one is added: that field is also associated with a
meaning of “threshold”. It acts as a delimiter to keep multicast packets from
being forwarded without control across the Internet. You can establish frontiers
by specifying a multicast packet will cross your multicast router only if its TTL

https://secure2.linuxjournal.com/ljarchive/LJ/065/3041l1.html


field is greater than a particular value. This way, you can multicast a conference
restricting its scope to your LAN (TTL of 1), your local site (TTL<32), your country
(TTL<64) or allow it to be unrestricted in scope (TTL<256). Our test program lets
you specify the TTL on the command line, then sets it using the IP_
MULTICAST_TTL option. If none is specified, TTL 1 is assumed (see lines 52 to
62). If you are using multicast tunnels or your applications are separated by
multicast routers, you can run the program on both ends by increasing the
value of the TTL field until the two programs “see” each other. This way, you can
easily discover the minimum TTL necessary for your applications to
communicate.

If not otherwise specified, outgoing multicast datagrams are sent following the
default multicast route set by the system administrator. If this is not what you
want, you can specify another output interface for that socket. Our sample
program is quite simple and does not need this feature, so we did not use the 
IP_MULTICAST_IF option. Instead, we let the kernel choose the correct route. If
you need it, write code such as:

struct in_addr interface_addr;
setsockopt (socket, IPPROTO_IP, IP_MULTICAST_IF,
   &interface_addr, sizeof(interface_addr));

filling the interface_addr structure with a suitable value. If later you want to
revert to the original behavior, just call setsockopt again using INADDR_ANY as
the interface field. 

Receiving Traffic

Your radio or TV must be tuned to receive the channel you want to hear. In a
similar way, you must “tune” your kernel so that it knows which multicast
groups are of interest. This is known as “subscribing” the host to a particular
group. Note it is the host, not the process, that is subscribed. Processes are
bound using bind to a particular multicast group/port pair and must tell the
kernel they want to receive traffic for that group. The kernel then knows it must
not drop packets for that group. When it receives them, it makes copies for all
processes bound to that multicast address and port pair. When the last process
that remains subscribed to the group “drops membership”, the kernel stops
sending these packets to the upper layer protocols and ignores them again.

In short, if you want to receive traffic from a multicast group, you must take the
following steps:

• Create the socket (lines 71 to 74).
• Bind the group/port (lines 81 to 84).



• Optionally, use the SO_REUSEADDR option (lines 76 to 79), so that more
than one process can bind the same group and port on the same
machine, i.e., have multiple receivers.

• Join the group (lines 87 to 92).

The IP_ADD_MEMBERSHIP option expects a pointer to a struct ip_mreq. This
structure is defined in netinet/in.h. The first field, imr_multiaddr, contains the
group address you want to join. The second, imr_interface, holds the IP address
of the interface to which the group will be joined. This is a key point:
membership is associated with both groups and interfaces. You do not just join
a group; you join a group on a network interface. If your host is multi-homed,
you can join the same group on all your network interfaces, on one of them or
even on some of them. This way, the application will get packets sent for that
group and received on that particular interface. 

Normally, you want to receive traffic for that group and you don't care which
interface received it. In those cases, fill the imr_interface field with the 
INADDR_ANY wild card (see line 88).

When you are done, you might want to drop membership (stop being a
member of that group), although this is not strictly necessary if you are going to
close the socket right afterward. The kernel will drop membership for you on all
groups the socket was subscribed to when you close it.

If your process drops membership for a particular group but keeps the socket
bound, it will keep receiving that group's traffic as long as any other process in
the host remains a member. Joining a multicast group only tells the IP and data
link layers (which in some cases explicitly tells the hardware) to accept multicast
datagrams destined to that group; it is not a per-process membership, but a 
per-host membership.

The rest is easy; we fork and let the parent send messages (lines 123 to 137)
and the child receive them (lines 104 to 122). As we told it not to loop back, we
do not see our own messages. Change the IP_MULTICAST_LOOP option, and
you'll find you are talking to yourself.

Conclusion

Feel free to test, modify and enhance this example program. You'll probably
see that there are certain subtleties not fully addressed in the text. It is difficult
to cover everything in a short article, but you can check and complete it by
reading the Multicast HOWTO (tldp.org/HOWTO/Multicast-HOWTO.html).

http://tldp.org/HOWTO/Multicast-HOWTO.html


All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue65/3041.tgz. 

Juan-Mariano de Goyeneche (jmseyas@dit.upm.es) moved to GNU/Linux
quickly when he realized that it was much easier to debug and modify
programs when one has the sources. While he finishes his educational career,
he collaborates with the Telematic Systems Department (DIT) at UPM, Spain,
working with CSCW multicast applications. He is the author of the “Multicast
over TCP/IP HOWTO”. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/listings/065/3041.tgz
mailto:jmseyas@dit.upm.es
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The 19th Century Meets the 21st

Paul Murphy

Issue #65, September 1999

Mr. Murphy describes how he set up frame-relay service for the old Brooklyn
apartment where he lives. 

I live at the foot of the Brooklyn Bridge, in a 150-year-old building that used to
be the headquarters of the Brooklyn Railroad. Before the bridge was built,
barges and ferries docked along the piers. Trains brought people and goods
into Brooklyn and beyond. The bridge killed the ferries, the railroad and,
eventually, the neighborhood—the heart of Brooklyn in Walt Whitman's day. 

After a century of decline, the neighborhood, Fulton Ferry Landing, is being
reclaimed by artists and people like me who work anywhere, thanks to the
Internet. Disconnected for a hundred years, due to a network of roads that
ignored it, Fulton Ferry Landing changed little. Today, it is quickly being
reconnected to the rest of the planet, as a result of the most efficient
transportation network ever devised.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Figure 1. View of Brooklyn Bridge from Apartment Window 

Wall Street—just across the river—is one of the most wired neighborhoods on
the planet. The rest of New York, however, lags behind most of North America
in terms of connectivity options: few cable modems, little DSL, and ISDN being
more expensive than digital leased lines. Most people make do with a modem.
After seven years of dial-up access, I decided I could no longer wait for the
dissolution of our local telephone and cable monopolies—it was taking too
long.

Thanks to Linux, some volunteer work and a bit of luck, the old headquarters of
the Brooklyn Railroad is now one of the most wired old buildings on the planet.
Each apartment has two data ports connected to a router in the basement. The
router is connected to the Internet through a digital leased line. We now have
high-speed connectivity, 24 hours a day, for less than it used to cost us to
maintain dial-up accounts.

Why Wire?

A few months ago, I asked the building's residents to let me wire the building
with CAT5 in order to set up a building network, because it made sense both
economically and organizationally. Sharing resources, after all, is the whole
point of packet switched networking—not wiring an apartment building is
perverse.

Three years ago, I used to walk into many businesses that had each desktop
computer connected to the Internet through a dial-up connection. Today, most
of those businesses have connected their entire intranet to the Internet though
a single, large pipe. Dial-up connections are expensive and inefficient; no IT



organization would dream of setting things up that way. Apartment building
dwellers, however, have barely begun to question the way they approach the
problem. Although they enjoy high-speed, permanent connectivity at work, they
don't question the AOL dial-up ritual at home.

Costs

To date, no one is offering residential network management service. If you
want a building network, you will need an on-site expert to set up and maintain
it.

In the U.S., the local telephone company is responsible for wires to the building.
Residents are responsible for wires in their apartment. The building owner is
responsible for the wiring within the rest of the building. I suspect it will take at
least another two to three years for people to realize that IP is as fundamental
as telephone service. At that point, they will start making noise about wiring
capable of carrying data from the basement to their apartments. Network
equipment vendors will start building and pricing hardware for this market, and
of course, residential network management companies will be formed. In the
meantime, we have to plan and build everything ourselves.

My building was not prepared to provide a network infrastructure. I guessed
that trying to convince a majority of the shareholders to do so would be a
waste of time, so I offered to pay for it all and resell the service to anyone who
wanted it. Everyone with a computer has joined. While I would have preferred
not to absorb all up-front costs, I have enjoyed the privilege of making
decisions without running them by a committee.

The most significant up-front costs are the wiring, the router and the computer
providing name, mail and web services. Running CAT5 wires from each
apartment to a central hub—in our case, the basement—is never going to be
cheap. In most cases, however, it will cost far less than it cost me. The age of
the building worked against me.

In the early 20th century, services were run as if they would never require
replacement. Electrical wires were buried in plaster walls. Telephones were
wired directly to the building's exterior. Telephone jacks were a 1950s
innovation, an early example of plug-and-play. Today, architects frequently
design electrical systems to be accessible without the help of a demolition
crew. Those who are truly forward-thinking will design easily accessible, parallel
conduits: one for electricity and one for data. Today, “data” usually consists of
telephone and cable television wires. Tomorrow, those two will be joined by
computer network wires, which soon enough will also carry telephone and
television data.



In our building, nothing is straightforward. Throughout the years, conduits have
been run through the wood and concrete floors to carry electrical, telephone,
intercom and cable TV wiring. None were large enough to accommodate
additional wires. Running a new conduit was estimated to cost almost $1000
per apartment. That expense was impossible to justify at that time.

Figure 2. View of New York from Apartment Window 

While I was mulling over what to do about this network wiring problem,
another arose. The building ran out of telephone wires. Whoever did the
capacity planning when the central wires were installed never considered fax
lines, dial-up lines and two or three voice lines per unit. Also, the wires were old
—many broke due to corrosion and many were static-filled. Clearly, I had
another project on my hands.

Actually, I was lucky the building reached the end of its telephone network
lifetime when it did. Any earlier, and I would not have had the foresight to run
network lines in parallel with the new telephone lines. Any later, and I would
probably have invested in a high-speed solution for myself and would not even
have considered doing the work on a communal scale. The incremental cost of
running the network wires was negligible, so I decided to go ahead and do it.

The great irony, of course, is that everyone has now canceled the lines they had
for their dial-up service. Under the old system, we would now have plenty of
lines.

Besides the wiring, the router and central computer turned out to be the other
big cost in this sort of operation.



The router is expensive because each apartment needs its own subnet. I asked
Cisco what they sold that could do the job. They literally answered that buying a
router from them would cost me “both arms and both legs”. They did, however,
suggest a “cheap” alternative: a low-end router and a switch, a solution that
would have cost me about $3,500. I was not willing to spend half that much to
solve this piece of the puzzle. I was fairly sure I could build what I needed using
Linux.

My neighbor, a Linux guru, assured me I could. Before long, he and I had done
the research and mapped out a strategy that worked.

The hardware we needed was free. Businesses all over town have mountains of
486s gathering dust in their storerooms. They are thrilled to give them away! As
you know, the operating system we decided to use was also freely available.

Since our router was going to be a general purpose computer, we decided to
run all of the shared services on the same computer. This simplified a lot of
management issues. It also made disaster recovery relatively straightforward.
We built a second, identical machine that can be swapped in for the first at a
moment's notice. This sort of approach is practical only if a single machine is
involved.

Figure 3. Apartment Building 

Architecture

At the start of the project, I had one overriding goal: keep the architecture as
simple as possible. I could not guarantee a networking wizard would be
available when things failed. In fact, our backup system administrator is a 12-



year old resident who knows little about computers; I figured she would be
easier to train than most adults. Knowing I was going to have to write thorough
documentation about everything I implemented helped me stick to my goal.

We knew Linux could support multiple Ethernet interfaces. We were not sure
where to find a card with Linux drivers that could interface with our DSU. A bit
of Net research turned up a Canadian vendor, Sangoma Technologies, that
seemed to be selling exactly what we needed. Five minutes on the phone with
one of their Linux guys convinced me their WAN pipe product would do the job.
At $550, it was the most expensive piece of hardware I had to buy, and it
certainly beat Cisco's “cheap” solution.

I now had all the pieces: a frame-relay line from the outside, a DSU, a router, a
hub, a general purpose computer, wires and a willing alpha tester. I just had to
work out the details.

Network Topology

We originally planned to isolate each apartment behind an Ethernet interface.
Of course, that seemed ridiculous for those with a single Windows 95 box. We
then considered putting all the single machine apartments on their own
segment. This presented an evolutionary problem. Whenever anyone bought a
second machine, we would have to change IP addresses, physical connectivity,
etc. We were stuck between over- and under-engineering the network, until my
neighbor remembered some work he'd done earlier for a client in Atlanta.

He remembered Linux supports something called Ethernet aliasing. This allows
a single interface to support multiple networks. For example, a single Ethernet
card can be configured to support ten apartments, each of which is assigned its
own subnet. This turned out to be the perfect compromise. We could logically
isolate each apartment without having to use many Ethernet cards and several
computers.

If an apartment grows into needing more thorough isolation, we can upgrade it
to its own Ethernet board! By the time all available slots are used in our current
486, it will have to be replaced in order to deal with the Y2K issue. By then,
maybe the router vendors will be selling solutions with more down-to-earth
prices.

Security

When I first began discussing the network idea with other residents, security
seemed to be at the top of their list of concerns.



We worked out a few security schemes using proxy and masquerading facilities.
Whatever we ultimately decided to do had to be configurable on an interface-
by-interface basis. I personally wanted access to my computers from the
outside world. Luckily, Linux supports that sort of granular security.

One day, I happened to mention the various options to a relatively computer-
savvy neighbor who runs a local area network in her apartment. She was
horrified that I would consider implementing a security scheme at the building
level. She wanted control over her own security so that she could access her
machines from anywhere on the Net. After a bit of discussion, we realized the
original requests for high security were all from people who used Windows 95
to dial up through AOL.

It turns out the concerns were the result of alarmist articles in the local papers
—security threat articles fail to put the subject in perspective. The least savvy
are most easily frightened, even though they are least at risk since they use
operating systems with few services that can be abused.

Having come to that realization and remembering our “keep it simple” goal, we
decided to leave security up to the individual apartment. After all, AOL does not
provide any special security to the lone PC connecting through its network.

Name Services

We toyed with the idea of allowing everyone to register their own domains, but
finally decided against it as this would have created too much work. Instead, we
registered a domain for our building, 8OldFulton.com, which is related to our
physical address. This is one of the few cases in which I think geographic
addressing of any kind makes sense. Given the choices we made, the
administrative burden of adding a machine or cluster of machines is relatively
light.

Mail Service

Mail service is not yet settled. At the moment, we run a POP3 server, because it
is essentially administration-free. POP3 is not, however, particularly friendly for
people who travel a lot or use multiple computers. Therefore, it is very likely I
will eventually bring up an IMAP4 or web-based mail server.

Anyone who wants a more flexible e-mail system immediately in place needs to
set up and maintain their own.



Web Service

It is tempting to offer web hosting services for everyone in the building. This
would, however, run counter to our “keep it simple” goal. Although there is little
complicated about allowing people to set up and maintain home pages, the
peripheral support involved is potentially significant. As people become more
sophisticated and web development and management software becomes
easier to use, my policy will probably change.

Currently, the web server we run serves only private building information:
contact information, bylaws, house rules, meeting minutes, etc. I am sure some
public information (e.g., directions) will eventually find its way onto the server.

As with special mail servers, anyone wanting to run their own web server is free
to do so, on their network segment.

Figure 4. Apartment Building Showing Proximity of Bridge 

Implementation Issues

I find it hard to quantify the difficulty involved in setting up the network. My
neighbor and I both have done quite a bit of UNIX system administration. Tasks
that seem easy to us, like configuring sendmail or name service, might require
quite a bit more effort for a beginner. Luckily, the Linux community is extremely
supportive. Before embarking on a project like this one, anyone unfamiliar with



system administration should make sure they know how to deal with the
following issues:

• kernel recompilation (for WAN pipe support)
• interface configuration
• routing
• name service
• sendmail
• HTTP server setup

We found the most difficult task was setting up the WAN pipe. Because it is not
a common router, the telephone company and ISP tend to blame it for every
problem—Sangoma is used to this. They ship excellent debugging tools with
their hardware, and their installation support personnel are top notch. 

The Future

Having the network in place is a great first step. We now have something very
solid to build on. Immediately, we all had better Internet access.

We are currently evaluating the purchase of a RaQ from Cobalt Networks. It
would provide a more flexible e-mail system and would allow each apartment
to maintain its own web site. Under the hood, the RaQ runs on Linux, of course!

Within a few months, I suspect most people will have given up their fax lines.
They were often justified because they were shared with the computer. Now
that they are stand alone, it probably makes more sense to use the JFax or efax
services. It is cheaper (JFax) or free (efax), and more flexible than a dedicated
phone line.

When we can buy IP telephones that look and act like telephones, we will buy
them. I can easily imagine this building buying no local lines from Bell Atlantic
within five years. Between IP telephones and the incredible calling plans
offered by our national cellular providers, local lines might not make any sense.

Installing a building security camera will now cost us about $800—the price of
an IP camera.

We will likely bump the network up from 10BASE-T to 100BASE-T within the
next two years. I suspect a gigabit network will become necessary once we all
start using net-based video broadcasts. If that turns out to be impossible over
copper, we will run fiber through the old telephone wire conduits. The wire was
left in place so that it would be easy to pull the fiber.



Acknowledgments

Paul Murphy spent almost ten years writing software on Wall Street. Today he
is a technical partner at Brushfire, a venture capital firm he helped found in
1997. He has advocated free software throughout his career, much to the
dismay of his employers. In his spare time he rides motorcycles, plays the violin
and raises trouble-free children. He can be reached at murphy@brushfire.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3038s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Supporting Multiple Kernel Versions

Tony Wildish

Issue #65, September 1999

Expect scripts to help you support multiple versions of the kernel across
different platforms. 

I work in the Atlas experiment at CERN. Many of the groups in Atlas are
beginning to turn to Linux as the operating system for the next generation of
particle-physics experiments. Among the teams working on the data-
acquisition, there is often a need for specific versions of the Linux kernel.
Typically, the teams are using special PC cards, such as ATM cards, where the
drivers may not yet be available for all kernel versions, or for which patches
must first be applied to the kernel. Both SMP and uniprocessor machines are
used, and team members want the same kernel with the same patches for both
flavors. They also wish to share software and meaningfully compare results. 

This article describes how my team supports this need. I will assume you are
familiar with the basic process of configuring and compiling a kernel.

We needed an environment in which a range of kernels could be configured,
built, packaged for distribution and later installed in a coherent and consistent
manner. The result is our “kernel repository”, containing tar files of the source
code for several kernel versions with different patches applied, tar files of the
compiled kernels, and a set of scripts used to compile and install the kernels.
We wanted to ensure that the configure and build steps were fully recorded
and any kernel configuration could be reproduced at a later date, even if the
details of the build environment had changed. Also, we wanted to keep up with
newer kernel versions (at the time, 2.2.0 was about to be released), so we tried
to make it easy to add new versions as they came out. We also wanted the
distributions to be easy to install, so that people could use them without
knowing the details.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Availability

Our kernel repository and all its associated tools are accessible on the WWW at 
www.cern.ch/Atlas/project/kernels/www/kernels.html. The kernels are available
as separate distributions of precompiled binaries and source code. A technical
note is included, which goes into greater detail on some points and helped
form the basis of this article.

Preparing the Source Distributions

The original kernel sources were downloaded from the Web. Each kernel
unpacks into a single subdirectory—/linux. Since users may want several kernel
source trees available at the same time, we rename this directory to /linux-
kernel_version_number.orig and repack the tree using tar and bzip2. To give a
clear example, if I had downloaded the tar file for version 2.2.0 of the kernel, I
would repack it with these commands:

cat linux-2.2.0.tar.bz2 | bzip2 -d | tar xf -
mv linux linux-2.2.0.orig
tar cf - linux-2.2.0.orig | bzip2 >linux-2.2.0.orig.tar.bz2

The kernel repository includes scripts which will fetch and repack kernels for
you. 

Whenever any patches were applied, the corresponding source tree was
renamed to reflect the patch and sometimes the version of the patch. For
example, 2.0.36 with the “bigphysarea” patch is packed as
linux-2.0.36.bphys.tar.bz2.

Configuring the Kernels

To configure the kernels, I wrote an Expect script called KernelConfig.exp.
Expect is a tool for automating interactive processes (see “Automating Tasks
with Expect” by Vinnie Saladino, Linux Journal, October 1998), and it is ideally
suited to this task. KernelConfig.exp runs make config at the top of the kernel
source tree and answers the questions for you. The beauty of controlling the
configuration by an Expect script is that it is insensitive to the kernel version
used with it. This script should be able to configure any Linux kernel version. I
have run it on all stable kernels from 2.0.33 to 2.2.7 and on a number of the
2.1-series kernels. While it may not give an optimal configuration for any kernel
(whatever that might mean), it does provide consistent and reproducible
configurations.

http://www.cern.ch/Atlas/project/kernels/www/kernels.html


Some configuration options are hardwired in the script, such as:

• Support for EXT2 and Minix file systems for compatibility with the majority
of the available rescue disks.

• Support for RAM disk and initial RAM disks. This is essential because the
kernel uses modules for most of its functionality and needs the initial RAM
disk support to boot on the widest possible range of hardware.

• Compile the kernel for a Pentium-class processor—we have no 386 or 486
machines.

• Support for NFS and for root-on-NFS. Eventually, booting over the
network might be useful, in which case this option is mandatory.

• Enable the “experimental code” option. This might seem dangerous, but it
is needed to include the ATM code.

• Module-versioning is disabled. While this means one less safety net for
the user, it does make life easier if we have to move modules around.

• Support for all classes of network cards, SCSI cards, sound cards and
other classes of hardware is enabled. The individual card support is
compiled as modules.

Some hardware support is plainly excluded, even though it is available as
modules, because at least one of the kernels in the range we are using does not
compile. Such problems are normally caught and fixed rapidly, but if the
software is not important to us, I leave it disabled for consistency. This happens
for a few sound cards, the infrared devices (broken in 2.2.6) and at least one
ATM card we don't use. This list may grow as more kernels are produced, so
you should look at the configuration log or the script to see what it does. For all
other options, the script will select to compile the code as a module if possible;
otherwise, it will use the default offered by the configuration. The output of the
configuration is stored in the KernelConfig.log file in the current directory. If
this file already exists, the output will be appended to it, not written over
existing information. 

Two words of caution are necessary. The script reacts to the defaults and will
therefore react differently if the default changes. For some code, the default
changes over time. Something available only as built into or excluded from the
kernel in the 2.0.x series might be available as a module in the 2.2.x series. In
this case, it will be built in or excluded from the 2.0.x series, according to the
default, but will certainly be built as a module for the 2.2.x series. If you need
that feature at boot time, be warned.

Secondly, the defaults are taken from the .config file if it exists, or from the file
arch/i386/defconfig if the sources have never been configured. If you configure
the kernel by hand and set some options before running KernelConfig.exp, it



will accept those settings as default. For truly consistent results, run make

mrproper before running KernelConfig.exp.

SMP support is tricky. In the 2.0.x series, SMP support had to be enabled by
editing the Makefile or by building the kernel with the command make SMP=1

bzImage or a similar one. In the 2.2.x series, SMP support is a configuration-
time option, and the Makefile no longer needs to be changed. KernelConfig.exp
enables or disables SMP support, depending on the value of a user-defined
environment variable SMP_SUPPORT. If this variable is not defined or is empty,
the script will not enable SMP support. If it is non-empty, the script will enable
SMP support in the 2.2.x series.

This is not enough for the 2.0.x series, where the value of the make-macro SMP

must be true when the kernel is compiled, not when it is configured. I get
around this by defining SMP_SUPPORT to have the value SMP=1. I can then run
KernelConfig to configure the kernel, and make $SMP_SUPPORT bzImage

afterwards. For the 2.0.x series kernels, the value of SMP_SUPPORT ensures
that the kernel is built with SMP enabled at compilation time. For the 2.2.x
series, the very fact that the variable is defined causes KernelConfig.exp to
enable SMP support at configuration time. This gives a consistent approach to
SMP for both the 2.0.x and 2.2.x series kernels.

Building the Kernels

I use a Bash script called KernelBuild.sh to compile the kernels and produce the
binary distributions. It takes one argument, the name of a kernel source file
(without the “.tar.bz2” extension—e.g., ./KernelBuild.sh linux-2.0.36.bphys). It
starts by defining a few environment variables:

• MY_WORK is my working directory. Here, the kernel sources will be
unpacked and the distributions will be built. KernelBuild.sh expects to find
all the scripts and tools it needs in the directory $MY_WORK/bin. It will
also ensure the correct subdirectory structure exists for building the
distributions. The built kernels are installed here, not under the root
directory, and the distribution tar file is created at this level. Users can
unpack it in the true root directory of their client machines.

• MY_SRC is the directory containing the prepared kernel sources. I set this
as a separate variable to allow customisation of the compilation scripts in
another working directory, without having to copy the sources with them.
For example, separate teams who wish to build their own versions of the



kernels could set MY_SRC to the source directory in a common repository
and use the sources directly from that location.

• MY_ROOT is the root directory from which the link is set to the source
code of the kernel being compiled. In other words, KernelBuild.sh sets a
soft link from $MY_ROOT/linux to point to $MY_WORK/linux-2.0.36.bphys
—or whichever version it is compiling. In a normal Linux environment, 
MY_ROOT would be /usr/src, and the link would be set from /usr/src/linux
to the actual source tree. By allowing it to be another directory, it is
possible to compile the kernel as a normal user in another directory
instead of working as root. You set the link /usr/src/linux to point to
$MY_ROOT/linux once, as root. Then you can change the link $MY_ROOT/
linux, as the user who compiles the kernels, as often as you wish.

• KERNEL_VERSION is simply the input argument.

The MY_* environment variables may be defined externally if you wish, and will
not be overridden by the script. KERNEL_VERSION will always be set from the
input argument. 

KernelBuild.sh does not actually do the work of compiling the kernels. For this,
it uses two other scripts, Meanwhile.pl and KernelBuild.cmds. Meanwhile.pl is a
Perl script which will execute a Bash script in the background, log all the output
and send an e-mail message when it is done.

The real workhorse is KernelBuild.cmds, which can be executed as a stand-
alone script, although normally you would use KernelBuild.sh. It unpacks the
source code tree, uses KernelConfig.exp to configure it, compiles the
uniprocessor version of the kernel, packs it into a binary distribution file, packs
the header files into a header-file-distribution, then repeats the process for the
SMP version.

KernelConfig.exp determines how a kernel is to be configured, but
KernelBuild.cmds determines how it is to be built and installed. The boundaries
between the two are a bit blurred because of the way in which SMP support
has changed from the 2.0.x series to the 2.2.x series, as mentioned earlier. If
you wish to customise the build, it is these two scripts that you will want to
change.

KernelBuild.cmds makes use of the fact that anything stored in a file called
.name at the top level of the kernel source will be incorporated into the kernel
name and can be retrieved later using the commands uname -v or cat /proc/
version. I use this to record the kernel version string, including the distinction
between uniprocessor and SMP versions. For the 2.2.x series, the Makefile



includes this distinction, but for the 2.0.x series it does not. KernelBuild.cmds
uses a bit of sed, smoke and mirrors to smooth out the differences.

Finally, the binary and header file distributions are stored in the /dist directory,
packed using tar, and compressed with bzip2. The binary distribution contains
the kernel image, the System.map and all modules. It also contains a copy of
KernelConfig.exp, so in the likely event that this script is updated, you will still
have access to the exact version used to compile any particular distribution of
the kernel. For the same reason, the log file of the configuration is also packed
in the distribution. When the distribution is installed, these will find their way
into the directory /log/kernel-version.

Installing the Kernel Binary and Header File Distributions

The kernels can be installed using the InstallKernel.pl script. InstallKernel.pl
takes the full name of the kernel distribution file as input, with the “.tar.bz2”
extensions. First, it checks that the distribution will not overwrite any existing
file—if so, it aborts execution unless you specifically tell it to go ahead. It installs
the kernel and its modules, and adds an entry to /etc/lilo.conf for this kernel. It
is quite careful about how it does this. It creates a backup copy of /etc/lilo.conf,
then scans it line by line until it finds a root= entry. It uses this to set the root
for the new kernel. If it finds a later root= entry that specifies a different root
partition, it will warn you, but will continue, using the first one it found. It will
not add an entry if it finds an existing entry for this kernel image. The last thing
it does is show you the differences between the saved lilo.conf and the one it
has just created. InstallKernel.pl will not run LILO for you—you must do that
yourself.

Another script, InstallHeaders.pl, will take care of installing the header files for
you. The headers are installed as subdirectories of /usr/src/linux-headers. If
you set the link /usr/src/linux to point to one of these installed sets of header
files, you can compile your driver or program for a version of the kernel
different from the one you are actually running. I make use of this to compile
the ARLA AFS clone for all the kernels I support, without rebooting my machine.

Post-Installation Steps

Whichever distribution of Linux you are using, you will probably have to modify
the way it decides which set of kernel modules to use. The details vary from
distribution to distribution, so it is not possible to describe all the necessary
changes here.

Since these kernels rely heavily on the use of modules, you may also need to
create an initial RAM disk for your specific machine. This is certainly true if you



have a SCSI-based system. See the man page for the mkinitrd command for
details.

Cloning the Kernel Repository

In order to clone the repository to build your own kernels, copy the contents of
the /bin and /source directories, and modify them as you wish. KernelBuild.sh
will need modifying in order to set the MY_* variables correctly.
KernelConfig.exp may also need modifying to enable or disable any specific
options—this may not be a trivial task. KernelBuild.cmds will need to be
modified if you wish to actually change the way the kernels are built. The other
scripts should never need to be altered.

Summary

At present, about 30 kernel source distributions are included in the repository,
representing kernels from 2.0.34 to 2.0.36 and 2.2.0 to 2.2.7 with various
patches. As the person who manages the machines running these different
kernels, I find that this standardization has simplified my tasks considerably.

Tony Wildish received a Ph.D. in High Energy Particle Physics from Imperial
College, London, in 1989. His career evolved from programming in Fortran to C
and C++ while working at CERN. He became a systems administrator four years
ago, and discovered Linux as a means of practicing his job while at home.
Currently, he works at CERN for one of their experiments in preparation for the
Large Hadron Collider, due to be commissioned in 2005. He enjoys Greek wine,
Greek beaches and Greek food, as well as reading, and is especially fond of
Terry Pratchets' Discworld series. His goal in life is to go on holiday and stay
there. Tony can be reached via e-mail at tony.wildish@cern.ch.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Focus on Software

David A. Bandel

Issue #65, September 1999

atsar, ext2resize, ippl and more. 

Things continue to develop at a rapid pace. I took a look back at some of the
packages I reviewed several months ago, and noticed many have had
significant improvements. One package, the Ministry of Truth, a job tracking
system, has morphed into a simple way to create databases and tables and
make use of them. The original job tracking database is included and can be
expanded. Other packages haven't made such a drastic metamorphosis, but
have improved. So if you found them lacking back then, take another look. 

atsar:ftp://ftp.atcomputing.nl/pub/tools/linux/

For those Linux users who have administered SCO boxes or other systems that
have a utility known as the System Activity Report (SAR), you know what you're
missing. For those who haven't, SAR is a great tool to track your system's
health. A clone or port is long overdue. The way to get the best indication of
your system's health is by putting an entry in crontab to run atsar every twenty
minutes. This program will list how resources are being used, so you can
prioritize what to buy to fix any bottlenecks found in the system. The atsar
report lists percentages for user, system, nice and idle. Armed with this
information, you can more easily justify system expenditures. It requires glibc.

ext2resize:http://www.dsv.nl/~buytenh/ext2resize/

Still in development, ext2resize shows a lot of promise. This utility purports to
allow you to resize (shrink or extend) an existing EXT2 partition. Being the
coward that I am and not having a disk or partition handy with expendable
data, I tested only against a file I created, carefully following the instructions
with the package. I would need to throw in a disk to test it properly. Problem is,
I don't have one. It requires glibc.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
ftp://ftp.atcomputing.nl/pub/tools/linux
http://www.dsv.nl/~buytenh/ext2resize


ippl:http://www.via.ecp.fr/~hugo/ippl/

ippl is an IP protocol logger designed as a replacement for IP Logger, which logs
IP packets. In contrast to iplogger, it is highly configurable. It will log any or all
TCP, UDP and ICMP messages using the syslog facility, depending on how you
have configured it. With this available, all you need is a Perl script or two to
search (using grep) through the messages and check for anomalous behavior.
Crackers often use scripts that essentially outsmart programs looking for
sequential port scans by doing slow scans over a period of hours or days. With
some as-yet-unwritten scripts, ippl could detect these scans. Now, if I just knew
Perl. It requires glibc and libpthread.

galway:http://erin.netpedia.net/

galway is a small program that is a step toward becoming a usable web-page
creation tool. It uses pull-down menus to help you create pages. These pull-
down menus aren't complete as of this writing, but should be soon. If you don't
like what you see, it is easily changed. You can add pull-downs, remove them,
change them, or add/delete/change items on the pull-down menus. Since on
any given set of web pages the top and bottom portions of the page (those
containing the headers and footers) change rarely or very little, this program
allows an upper and lower template to be added (respectively) above and
below the body of the page. It requires guile, guile-gtk and gtk.

gperiodic:http://www.bgw.org/projects/gperiodic/

Got a student just starting out in chemistry who needs a copy of the periodic
table of elements? gperiodic doesn't have it all (valences are missing, for one
thing), but it does give the correct name, atomic number, weight, and boiling
and melting points. This quick reference may be all your budding DuPont needs
for a while. It requires libgtk, libgdk, libglib, libgmodule, libdl, libXext, libX11,
libstdc++, libm and glibc.

syswatch:http://www.weirdo.net/scripts/

syswatch is a nice utility that displays in a web browser window what is going
on on your system. System information shown includes uptime, kernel version,
RAM and swap. A second section shows file system information. A third section
displays the output from w command. A final section displays resource hogs
based on CPU usage, memory usage, and amount of time on the processor.
The only change I would make is to add an HTML tag to update the page
automatically every minute or so. It requires a web server that allows CGI
scripts (Perl) and a web browser.

http://www.via.ecp.fr/~hugo/ippl
http://erin.netpedia.net
http://www.bgw.org/projects/gperiodic
http://www.weirdo.net/scripts


xps:http://www.netwinder.org/~rocky/xps-home/

xps displays a process tree in an easy-to-read format. Unlike other process tree
viewers/display programs, this one makes good use of diagonal lines to keep
things grouped and on the screen without much scrolling around. Color is used
to denote various states (running, sleeping, etc.). Double-clicking on a process
pops up a window with specifics on that process and options which allow you
to change priorities (renice) or send signals to the process, if you have sufficient
permissions. It requires libXmu, libXm, libXext, libXt, libX11, libSM, libICE and
glibc.

David A. Bandel (dbandel@ix.netcom.com) is a Computer Network Consultant
specializing in Linux. When not working, he can be found hacking his own
system or enjoying the view of Seattle from an airplane.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.netwinder.org/~rocky/xps-home
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Dynamic Graphics

Reuven M. Lerner

Issue #65, September 1999

Generating graphics, charts and graphs for your web site is easy following Mr.
Lerner's instructions. 

Mark Andreessen, a co-founder of Netscape, is often credited with having
turned the Web from an academic playground into a mass medium. But just
what did Andreessen do? After all, Tim Berners-Lee invented the browser,
HTML and URLs. You could even argue that the original browser was superior in
some ways, in that it allowed people to write pages of HTML as well as read
them. 

Historians might take issue with this, but I would argue that Andreessen's
greatest idea was allowing for graphics alongside text in web documents. As a
text-only medium, the Web was interesting mainly to physicists and other
academics, but with the introduction of graphics, it began to appeal to an
entirely new segment of the population.

Today, graphics are not just used for decoration, but often stand on their own.
Nearly every professional web site now hires one or more graphic artists to
design the site—even when the site will deal mainly with text. Some sites would
not be possible or even worthwhile were it not for the use of graphics. In some
cases, these graphics are dynamically generated, produced by a program,
instead of sitting in a static file on disk.

This month, we will look at ways in which we can create such dynamic graphics
with CGI programs. We will look at the GD library, which allows us to create
arbitrary images, and will quickly move on to creating different kinds of
dynamically generated charts and graphs. After looking at some simple
examples of such charts, we will examine a more sophisticated example, one
which draws its inputs from a relational database.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Perl, Dynamic Graphics and GD

Writing a CGI program that outputs HTML is not particularly difficult, as we have
demonstrated in many previous installments of “At the Forge”. Here, for
example, is a simple program that, when invoked, returns some HTML to the
user's browser:

#!/usr/bin/perl -wT
    use strict;
    use diagnostics;
    use CGI;
    use CGI::Carp qw(fatalsToBrowser);
    # Create an instance of CGI
    my $query = new CGI;
    # Send an appropriate MIME header
    print $query->header(-type =>
    "text/html");
    # Send some content
    print $query->start_html(-title =>
    "This is a test.");
    print "<H1>Testing!</H1>\n";
    print "<P>This is a test.</P>\n";
    print $query->end_html;

If we want to return graphics to the user's browser, we must modify the
“Content-type” header in the HTTP response, generated with the call to
“header”. If we want to generate a GIF, we will have to change our call to header
such that it outputs “image/gif” instead. By the same token, we can tell the
user's browser that a JPEG (image/jpeg) or PNG (image/png) graphic will be
sent. Once we have described the content to the user's browser, we must
generate a graphic of this type. How can we do that? 

Perl's scalar variables can contain any data we might like. If we were more
familiar with the GIF standard, we could stick a GIF into a scalar, then send that
value to the user's browser. Of course, most of us are unfamiliar with the
intimate details of the GIF standard, which makes this a less than ideal solution.
A better idea would be to take advantage of Perl's object-oriented capabilities,
using someone else's solution to the same problem.

Sure enough, Lincoln Stein (author of CGI.pm, the standard module for CGI
programs) has written and distributed GD.pm. This module, available on CPAN
(see “Resources”), gives us access to the popular “gd” libraries for C written by
Thomas Boutell.

GD gives your program the ability to draw in a manner similar to popular
drawing programs. You can choose from an array of paint brushes, colors and
built-in shapes, as well as any fill shapes you have drawn. GD has its own
internal drawing format, but as we will see, it supports the conversion of drawn
images into GIF format.



A Simple Graphics Program

A simple program that uses GD, gd-intro.pl, is shown in Listing 1. If you install it
in your CGI directory and invoke it from your browser, you should see a blue-
filled green square.

Listing 1.

As you can see, our program manipulates two objects—an instance of CGI and
an instance of GD. Each object handles its own affairs, keeping its nose out of
the other object's business. $query, our instance of CGI, neither knows nor
cares what sort of data we are receiving from the user or returning to his or her
browser. By the same token, $image, our instance of GD, does not know that its
output is going to be sent to a browser. Such compartmentalizing of tasks is
one reason why objects make programming easier and software more
maintainable.

When we create $image, we declare it to be of type GD::Image and to be 100
pixels wide by 100 tall. GD will not warn you if your image is cut off by the
boundaries of this declared “canvas”; when I first started to play with GD, I was
puzzled by the fact that no output appeared. I finally realized that my image
was 100x100, but I was drawing a circle with a 400-pixel diameter. GD dutifully
performed the task I requested, which meant that no picture appeared in the
end.

After declaring $image, we allocate some colors, using GD's colorAllocate

method. Each color is defined as red-green-blue (RGB), with each of those
parameters varying between 0 and 255. I find it useful to declare color names
within a hash, as with %COLORS in gd-intro.pl, but you may prefer to assign
them to individual variables or to work with colorAllocate directly.

Next, we tell $image that it should create GIFs in “interlaced” mode. Interlacing
means that instead of drawing every horizontal line of an image, the computer
should first draw all the even lines, and then all the odd lines. You can see this
in action on an ordinary television set. When TV standards were defined,
televisions were unable to draw all the horizontal lines at once. Because of this,
your television draws all the odd horizontal lines, followed by the even ones,
followed by the odd ones again.

Making a GIF interlaced is not related to the speed of your computer or its
ability to display images quickly; rather, it has to do with the speed of a user's
connection. If the user has a slow connection, a GIF will load slowly. Making the
graphic interlaced allows the user to see the graphic as it loads. Otherwise, the
graphic will not be displayed until it is completely loaded, which might take a
while.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3579l1.html


We also set the “transparent” color, which is the color selected to melt into the
background. By setting white as the transparent color, we indicate that
anything drawn in white should actually be drawn in the color of the
background. Since GD drawings have a white background by default, setting
white as the transparent color means our graphic will appear to be floating in
the user's browser, rather than set against a white background.

After all this, we can finally draw. We create a rectangle between 20,20 and
80,80, which should fill most of the 100x100 area defined when we created 
$image. We choose to draw the rectangle in green, using %COLORS, which we
defined earlier. Finally, we fill the rectangle with blue by pointing GD to a point
inside of the rectangle and asking it to fill the area.

GD has a number of other functions, including the ability to draw polygons,
create custom brushes and fill with specified patterns. You can add text labels,
which are incorporated into the final graph. You can even save graphics to disk
in GD's own format, then load them again and continue to manipulate them
before turning them into GIFs.

Charts and Graphs

GD is a wonderful tool for drawing on the Web. With it, you can create all sorts
of marvelous things. Most of the web graphics I want to create are charts and
graphs based on various types of data. I could use GD to create such graphs,
but that would involve too much work.

Luckily, as is often the case with Perl, someone else had this problem and
decided to solve it. Martien Verbruggen wrote and distributed the GIFgraph
module, which allows us to create different types of charts based on a list of
data points. GIFgraph uses GD, but provides us with an object-oriented
interface to the new graph. This allows us to think in terms of graphs, styles and
shapes—as opposed to GD, which would force us to think in terms of pixels and
lines.



GIFgraph is actually a set of modules collected under the single “GIFgraph”
name. One module handles bar graphs, another pie charts and so on, for
nearly ten different types of graphs.

Listing 2.

In Listing 2, for example, we create a simple bar graph, with labels “a”, “b” and
“c”, with respective values of 1, 2 and 3. We do this by creating an array,
traditionally called @data. Each element of @data is an array reference, with
the first element corresponding to the labels. Our program displays results
from a single set of data:

my @data = (["a", "b", "c"], [1, 2, 3]);

We could easily compare two sets of data: 

my @data = (["a","b","c"], [1,2,3], [4,5,6]);

GIFgraph is smart enough to use different colors for different sets of data. So
given the above data, it will draw six bars—three each of two colors, with the
values 1 and 4 associated with the “a” label, the values 2 and 5 associated with
the “b” label, and the values 3 and 6 associated with the “c” label. 

Before we can send the output to the user's browser, we must send a MIME
type. Because it relies on GD, GIFgraph can produce output in GIF format. We
tell the browser what to expect with the following command:

print $query->header(-type => "image/gif");

Now we will create our graph object and send its GIF output to the user's
browser: 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3579l2.html


my $graph = new GIFgraph::bars;
print $graph->plot(\@data);

Notice how we pass an array reference to @data by prefacing it with a
backslash (\@data). Passing @data as a reference ensures it will be handed to
the plot method as intended. 

In this example, we created a bar chart. What if we want a different kind of
chart? We can do that by importing a different Perl module (e.g., GIFgraph::lines

instead of GIFgraph::bars) and making $graph an instance of the new type.

Note that calling $graph->plot creates a graph based on @data but does not
send it to the user's browser. This method returns the resulting GIF to its caller,
allowing us to save it to disk, send it to the user's browser or manipulate the
resulting GIF in Perl or external tools. Since the CGI standard mandates all
output to STDOUT be sent to the user's browser, we can display the chart on
the user's computer by printing the result from this call.

Charting Based on a File

Now that we have seen a simple program that produces a chart, let us look at a
slightly more complicated example, one which mirrors some real-world
situations. Assume we want to create a graph based on a text file. For example,
assume we are implementing part of the reporting function for a web-based
voting system. The results of a given election will be placed in a text file, called
votes.txt:

Tom    123456
Dick   100000
Harry  20000

The election data is stored in the above file, with the candidate's name and the
number of votes he received separated with one or more tab characters. This



allows the candidates' names to contain space characters, such as between first
and last names. 

Listing 3.

We could use a bar chart with this data, but it would not be nearly as useful as a
pie chart, in which each candidate is given a proportional part of the pie. As you
can see in Listing 3, our program vote.pl is not very difficult to create and
produces results relatively quickly.

It does this by iterating through each line of votes.txt, using Perl's built-in “split”
function to turn a scalar value (the line from votes.txt) into a list value. In this
case, we split that line across tabs, putting everything before the tab in $name

and everything after the tab in $votes. We then use the “push” function to add
these values to @names and @votes, respectively, which are built up with every
iteration through votes.txt. If there are four candidates in votes.txt, this loop is
executed four times, and @names and @votes each has four elements.

When we exit from the loop, we create @data by inserting references to 
@names and @votes. As always, the first element of @data is an array
reference containing the names. Subsequent elements of @data contain
values; in this case, we have only one value, @votes. We create the graph by
creating an instance of GIFgraph::pie and then plotting it to the user's browser.

Retrieving Data from a Database

The above example introduced us to the notion of creating a chart based on
data stored on disk. While this is certainly the right idea, storing such data in a
text file has its drawbacks. It is more common and more useful to put such data
in a relational database.

Creating a chart based on a table in a relational database is not very different
from creating one based on a text file. The main difference is with the loop we
use to iterate over our input data. In vote.pl, we iterated over each line of
votes.txt, turning each line of text into a name,value pair, which we then added
to @data. When we retrieve information from a database, the information is
already split into name,value pairs for us.

Before we can begin to write db-vote.pl (a database version of vote.pl), we must
create a table in our database. As usual, I will use MySQL, a “mostly free”
database described in Resources. MySQL's syntax is standard enough for most
purposes, and most of the following should work with other databases as well.

Relational databases expect to receive input in SQL, the “structured query
language”. SQL is not a programming language—so while we can create all

https://secure2.linuxjournal.com/ljarchive/LJ/065/3579l3.html


sorts of queries to manipulate data in our table, we must embed those queries
within a program written in a full programming language. Perl's DBI (“database
interface”) module allows us to embed SQL statements inside our Perl
programs.

We can create a new table by issuing the following SQL command:

CREATE TABLE Votes (
         candidate_name VARCHAR(30),
         votes_received BIGINT UNSIGNED
         );

While we could send the above to our database server from within a Perl
program, it is more usual to type it directly from within an interactive database
client. MySQL comes with an interactive client called mysql which allows you to
send queries to the database (and receive responses) without having to embed
your statements inside a Perl program. 

After you issue the above SQL query, the database server will create a new
table, Votes, with two columns. The first column, candidate_name, allows for up
to 30 characters. The second column is defined to be a BIGINT UNSIGNED, that
is, a large integer. We name this column votes_received.

We will now take a leap of faith and assume that, after the polls close on
election night, our database table will magically be filled with appropriate
values for each candidate. (In a real application, we would probably design
things differently, storing each candidate's name in a second table and perhaps
even storing each vote in its own row. We will ignore real-world concerns for
the time being, so as to concentrate on how to create a graph with this data.)

Assuming our table has been populated with a list of candidates' names and
their votes, how can we rewrite vote.pl so it takes its input from a database? As
mentioned above, we will rely on DBI, Perl's database interface, which provides
a uniform, object-oriented interface to most popular relational databases. Each
database is described in a DBD, or database driver, and is imported
automatically when we open a connection.

Opening a connection to the database creates a “database handle” object,
traditionally called $dbh. We use this object to create a “statement handle”,
traditionally called $sth, with which we send the SQL to the database server.
Our query, in this case, is rather simple:

SELECT candidate_name, votes_received
    FROM Votes

When it executes this query, the database server will return a two-column table
to the user—in this particular case, the entire contents of the Votes table. Each



row of the table corresponds to a line in the text file votes.txt which we saw
earlier. 

DBI provides us with a number of methods by which to retrieve data from $sth.
The most commonly used methods retrieve a row as an array, either in its
usual form (using $sth->fetchrow_array) or as a reference (using $sth-

>fetchrow_arrayref). While the arrayref method is more efficient, beginning Perl
programmers often prefer to avoid references, which sometimes confuse
them. In both cases, the order of elements in the returned list is determined by
the order in which columns were named in the query.

Listing 4.

The rest of db-vote.pl (see Listing 4) continues in almost the same way as
vote.pl, pushing the values in each row onto @names and @values, then using
those to create @data.

It is generally preferable to put such information in a database, because of the
reliability and flexibility offered by relational databases. Remember, though,
there is no free lunch: a relational database is inherently much slower than a
flat ASCII text file. Moreover, our CGI program opens a connection to the
database each time it is invoked, an expensive and time-consuming operation.
For these reasons, vote.pl will almost certainly execute faster than db-vote.pl.
Whether this is an appropriate trade-off depends on the number of visitors to
your site, as well as the nature of your web applications.

Modifying the Graph

Now that you have seen how to create simple graphs based on various inputs,
let us spend a few moments discussing how you can modify the outputs.
GIFgraph allows you to change just about every aspect of the graph, including
the colors, placement and style of the legend, and the way in which the axes
are marked. This is done with the set method. Of course, certain settings are
active for only certain types of graphs; for instance, there are no axes on a pie
chart, meaning that setting the axis labels will be meaningless.

Here is one example invocation of set:

$graph->set(x_label => "Candidates",
        y_label => "Number of votes",
        title => "Voting results",
     logo => "corplogo.gif",
     zero_axis => 1);

The GIFgraph manual page, available by typing perldoc GIFgraph after installing
the package, describes these and many other options in detail. However, the
above is probably a good starting point and demonstrates how the various

https://secure2.linuxjournal.com/ljarchive/LJ/065/3579l4.html


factors describing a chart can be set. In the above example, we label the X axis 
Candidates, the Y axis Number of votes, include our corporate logo on the
chart, and ensure the axes will always begin at the origin (0, 0). There are also
options to choose colors and fonts, as well as define how often ticks should
appear on each axis—if you read the manual, you will likely be overwhelmed by
the wealth of options. 

Conclusion

As you can see, it is not particularly difficult to create graphics on the fly from
within our CGI program. Even more impressive—as well as generally useful—is
the ability to create many types of charts and graphs in only a few lines of code.

Next month, we will take a further look at dynamically generated graphics,
looking at a simple application that tracks a user's stock portfolio. That
application will revisit two topics we discussed last month, namely HTTP
cookies and saving state to a database.

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. His book Core Perl will be published
by Prentice-Hall later this year. Reuven can be reached at reuven@lerner.co.il.
The ATF home page, including archives and discussion forums, is at http://
www.lerner.co.il/atf/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.lerner.co.il/atf
http://www.lerner.co.il/atf
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Voice-Over IP for Linux

Greg Herlein

Ed Okerson

Issue #65, September 1999

Make your long-distance calls over the Internet using this new technology for
Linux. 

We've all got friends, family and Linux collaborators scattered around the
world, and we all like to talk. We love to pick up the phone and gab—but the
costs for long-distance phone calls are high, and international rates are worse.
Many, if not all, of the people we would like to call have Internet access. We can
now use our normal phone over the Internet to make phone calls using Linux. 

Voice-over IP is the answer, but it is a technology that has been slow to migrate
to Linux. Sure, applications are available that can already do this using a sound
card, but frankly, the headset and sound card solution is a kludge. Headsets
don't ring when an incoming call comes in, and most sound cards do half-
duplex voice that, at best, is annoying and cards don't connect to your personal
or business phone system. Other technologies have been available for Win32
platforms, but not for Linux. That is changing quickly, especially with the recent
pre-alpha release of new Linux drivers for the Internet PhoneJACK and Internet
LineJACK voice-interface cards from Quicknet Technologies, Inc.

The Hardware

Quicknet's Internet PhoneJACK card provides a low-cost, full-duplex audio
interface and telephone-line interface to a normal phone. The card has a POTS
(plain old telephone service) interface (RJ-11), where you plug in a normal
analog telephone and use it to make phone calls over the Internet. When calls
come in, the phone rings. When you want to make an outgoing call, you can dial
the digits from the phone or from software control. In all respects, it is a phone
—it just works over the Net. If you are calling a party that also has an Internet
PhoneJACK/LineJACK, or compatible software, then your call is free! If you want

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


to call someone on their normal phone line (not over their computer), you can
do that too, via a PC-to-Phone service like Net2Phone. In that case, you would
have already set up an account with the provider (via a browser), your call
would go over the Net to them and they would get the call to your party over
their system, charging you a low rate for the service. Obviously, the best case is
if both parties have Quicknet cards, because then you avoid the costs of the PC-
to-Phone service provider and get the highest quality. Another way to get it free
is by using a Quicknet Internet LineJACK card.

A huge advantage of Internet PhoneJACK/LineJACK cards is the audio-
compression capabilities (CODECs) built into the cards. These include G.711
(64Kbps), G.723.1 (6.3Kbps and 5.3Kbps) and TrueSpeech (8.5/4.8/4.1Kbps)
audio compression in hardware. These compression technologies may be used
with no royalties or fees whatsoever—the license cost is part of the hardware
cost. This is a big deal, because it allows small developers to build compressed-
speech applications without having to spend thousands of dollars on licensing
the CODECs. In other words, it makes it free to use the same technological
advantages as the big boys.

The Internet LineJACK card adds an extra twist: it has a PSTN (public switched
telephone network) interface. The PSTN plug (RJ-11) is connected to your
normal phone line, allowing you to place and receive normal phone calls using
the card. All DTMF and tone-generation capabilities are built into the Internet
LineJACK. It is also designed for software-controlled compatibility with different
phone networks around the world. (Different countries have different electrical
and tone signals with which the Internet LineJACK is capable of interfacing by
selecting the appropriate parameter set.) With the appropriate software, you
can use the Internet LineJACK to create a one-line gateway between the
Internet and the normal phone system. To solve the problem of not being able
to make PC-to-phone calls without an applicable service provider, all you need
to do is set up an Internet LineJACK card on a system in the area you want to
call. Your voice call “hops on” the Internet at your computer, then “hops off” at
the remote Internet LineJACK and out onto the local PSTN in that community to
complete the call—all for free.

It is important to realize that a single G.723.1 compressed audio “call” uses only
6.4Kbps. Even on a normal 33.6Kbps modem call, there is sufficient bandwidth
for multiple simultaneous calls over a single link.

Until recently, drivers for these cards were available only for Windows 95/98/
NT. However, Quicknet has recently released some early pre-alpha versions of
their Linux drivers, along with a sample application to provide an example of
how it all works.



Getting the Driver

You can get the Linux drivers at www.quicknet.net/develop.htm. Be warned:
these are still early, pre-alpha releases and are not for the faint of heart. At this
early stage, these are recommended only for people who wish to play with new
technology and are not afraid to fiddle around with their system. Of course,
that is most Linux people, but we had to warn you. The driver is distributed in a
compressed tar file that includes sample application source code and a simple
HOWTO.

Licensing

Many Linux folks may criticize Quicknet because their device driver is not Open
Source. Quicknet has made a carefully reasoned business decision to keep their
device driver binary-only and not reveal the source code. A full API will be
published to detail how to use the device driver, but the source code will be
closed. To their credit, Quicknet realizes the tremendous opportunities with
Linux and has made the investments needed to get the Linux drivers written.
Quicknet has also continued to invest in this area by hiring Linux developers to
work in-house.

However, the sample code accompanying the device driver is released under
the Lesser GNU Public License (LGPL). While there may be some who demand
the drivers be released Open Source, Quicknet believes strongly that having
stable, reliable binary-only drivers is good enough for most users, and Quicknet
is committed to supporting such a driver.

Requirements

The device driver for the cards requires a 2.2-series kernel, because some of
the low-level features take advantage of changes in the new kernel. The latest
modules are compiled with MODVERSIONS support, so assuming your kernel is,
the kernel will load the module if the symbol tables are compatible between
the module and the kernel. At the time of this writing, we are using 2.2.10
kernels for development.

Our modules have a dedicated “major number” so they can be used with the
normal module tools such as insmod and modprobe. All you have to do is add
a few lines to your conf.modules file, and the normal modules tools work with
our device driver. See below for more information on how to perform the initial
configuration.

You will need at least one Internet PhoneJACK/LineJACK card on each end of the
connection. Note that the initial release of the Linux driver supports only the
Internet PhoneJACK card, though by the time you read this, the Internet

http://www.quicknet.net/develop.htm


LineJACK will be supported as well. These cards are ISA bus devices that use
Plug-n-Play for configuration and use no IRQs. The driver will support up to 16
cards in any one system, of any mix between the two types.

Since the Quicknet cards are Plug-n-Play devices, you will need the isapnp tools
package to configure the cards. This package probably came with your Linux
distribution. Documentation is available on-line at metalab.unc.edu/LDP/
HOWTO/Plug-and-Play-HOWTO.html.

Configuration

The Internet PhoneJACK has only one configuration register that requires 16 I/O
ports. The Internet LineJACK card has two configuration registers. Isapnp
reports that I/O 0 requires 16 I/O ports and I/O 1 requires 8. The Quicknet
driver assumes these registers are configured to be contiguous, i.e., if I/O 0 is
set to 0x340, then I/O 1 should be set to 0x350.

If you are new to the isapnp tools, you can jump-start yourself by doing the
following:

• Run pnpdump to get a blank isapnp.conf file

        pnpdump > /etc/isapnp.conf

• Edit the /etc/isapnp.conf file to set the register I/O addresses.
• If you have multiple Quicknet cards, make sure you do not have any

overlaps. Be especially careful if you are mixing Internet PhoneJACK and
Internet LineJACK cards in the same system.

Use of the Driver

To install and load the driver, perform the following:

• Unpack the distribution file using tar.
• Run the included ixj_dev_create script to create the device files in the /dev

directory. This script will create /dev/ixj0 through ixj16.
• Run the isapnp configuration utility to configure the cards properly.
• Edit the /etc/conf.modules file to add a line that specifies the I/O (input/

output) port(s) for the cards you just configured with isapnp, and a line to
map the device number to the name of our device. You will need to add
the following two lines:

        options ixj io=0x300 ixjdebug=a0
        alias char-major-159 ixj

http://metalab.unc.edu/LDP/HOWTO/Plug-and-Play-HOWTO.html
http://metalab.unc.edu/LDP/HOWTO/Plug-and-Play-HOWTO.html


This example assumes you have one card at I/O address 0x300; you will need to
modify that value if you assigned card(s) to different ports. 

• Load the module with insmod or modprobe, as you would for any other
module.

• Verify the module loaded by running lsmod.
• Execute an application that uses the module (tpjack or tpjackd).

Example Code

Sample applications are included with the driver to demonstrate its use. The
following are some of the immediately useful ones:

intercom.c: demonstrates the driver's capability to pass audio between multiple
cards without passing the audio data through user space. The application only
has to indicate which cards will talk to each other—the driver does the rest.

inter2.c: the same concept as intercom.c, only it passes the data through user
space. In this example, the application has to deal with reading and writing to
the device files to pass data between cards.

tpjackd.c: this is the server side of a very basic IP Telephony application. It
simply waits on a TCP port for an incoming connection. When received, the
phone rings. When the phone is lifted, it starts passing UDP packets with audio
data to the tpjack.c program.

tpjack.c: this is the client side, corresponding to tpjackd.c.

Test Applications

tpjackd is the daemon application which listens for an incoming call. To use it,
type this:

tpjackd dev port

dev is the name of the device and is usually /dev/ixj0, although if multiple cards
are in the system, it might be /dev/ixj1, etc. port is the name of the port on
which the daemon will listen for an incoming ring. 

The daemon application now runs as a true daemon. It disconnects from the
controlling terminal upon startup and runs only in the background, logging
messages to syslog. Typical use during development is watching the logging in
an xterm window by using the command:

tail -f /var/log/messages



tpjack is the calling application and is used by typing the following: 

tpjack dev host port

dev is the name of the device and is usually /dev/ixj0, although if multiple cards
are in the system, it might be /dev/ixj1, etc. host is the name of the host
running the daemon (name, not IP address). Note that the names of both hosts
need to be resolvable, either by DNS or the local host's files. port is the port at
which the daemon will listen for an incoming ring. 

These sample programs provide an example of how to use the driver, and have
the added advantage of actually working well over the Internet. The authors
have used it to converse between San Francisco, California and (roughly) Dallas,
Texas. The voice quality was not as good as expected using real-time protocols
(RTP), but it was certainly good enough to have an intelligible conversation.

Known Limitations

Work is progressing rapidly on the driver, so check the web site often for new
versions. By the time you read this, we should be in beta testing with full
support for all the card's features.

The sample code is crude and does not follow any of the standards for Voice-
over IP (H.323, SIP, etc.). Support for such protocols will come later, though
probably not in source code form, due to other licensing restrictions. The
purpose of the initial sample code is to provide a simple means of exercising
the drivers and doing simple voice.

Currently, no software for Linux supports the use of any PC-to-Phone gateway
service providers (such as Net2Phone). Of course, that will also change soon.

The Future

The sky is the limit for what can be done with these cards. With the availability
of Linux drivers, we can craft all manner of servers to perform telephony
functions—over the Internet and with or without the normal phone network.
Some of the things we might soon see include VoIP PBXs, voice-mail services,
and PC-to-PC and PC-to-Phone gateways. However, the most exciting
applications for this technology have probably not even been imagined yet.
This is a wide-open area that is begging for the Linux crowd to start putting out
cool new applications. Quicknet Technologies wants to put the device drivers in
place, along with some simple libraries, to facilitate this innovation.



More Information

Additional information is available on the Quicknet web site at http://
www.quicknet.net/. A new mailing list has been started to provide developers
with a forum for discussing the development and use of the device driver. To
subscribe, send e-mail to majordomo@linux.quicknet.net; in the body of the
message, type

subscribe linux -sdk your_email_address

After verifying your subscription, you can send mail to linux-
sdk@linux.quicknet.net. If you have any problems with it, please send e-mail to
linux@quicknet.net, and we will help you however we can. 

Internet PhoneJACK and Internet LineJACK are registered trademarks of
Quicknet Technologies, Inc.

Greg Herlein (gherlein@quicknet.net) co-authored the sample applications
above and wrote the documentation for the release. He is a long-time Linux
programmer who has crafted Linux solutions on the high seas, remote
mountaintops and in corporate offices. He just recently joined Quicknet
Technologies, Inc. as a Member of the Technical Staff, developing Voice-over IP
solutions (especially for Linux). 

Ed Okerson (eokerson@quicknet.net) is the author of the Quicknet device
drivers and is also a long-time Linux guru. He's built out and run an ISP in Texas
and continues to build innovative Linux-based networking, voice and video
solutions. He recently joined Quicknet Technologies, Inc. as a Member of the
Technical Staff. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.quicknet.net
http://www.quicknet.net
mailto:gherlein@quicknet.net
mailto:eokerson@quicknet.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

cron: Job Scheduler

Michael S. Keller

Issue #65, September 1999

Have you ever wandered near your Linux box in the middle of the night, only to
discover the hard disk working furiously? If you have, or just want a way for
some task to occur at regular intervals, cron is the answer. 

The cron daemon, crond, packaged with most Linux distributions, controls
scheduling of regularly occurring jobs. When started upon entry into multi-user
mode, crond scans the directories /var/spool/cron/crontabs and /etc/cron.d
and the file /etc/crontab for work to do. crond then awakens every minute,
performs the work its record of jobs says it should do at that time, mails the
output (by default) to the owning user, then sleeps until the beginning of the
next minute. 

The implementation of crond packaged with Debian 2.0, the distribution I used
when writing this article, carries the name Vixie Cron, after Paul Vixie, its
author. I will use “cron” to refer, variously, to both the crond process and the
cron facility.

History of cron

cron evolved to enable the execution of jobs at regular intervals. Have you had
occasion to use the log files in /var/log? Most Linux distributions come with a
ready set of cron jobs to tame those log files. Without cron jobs, the file system
holding /var would eventually fill completely with log files. The potential uses
for cron exceed the small customizations I have made to my home
environment. If you want to automate something that runs more than once,
turn to cron.

How to Use cron

Individual users may use cron to automate tasks. Normally, all users may make
use of cron. If superuser has created /etc/cron.allow or /etc/cron.deny, then

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


access to the cron facility depends on the contents of those files. If /etc/
cron.allow exists, your user name must appear in it for you to use cron. If /etc/
cron.deny exists but /etc/cron.allow does not, your user name must not appear
in /etc/cron.deny, or cron will not work for you. To edit your cron settings, use
the crontab command:

crontab -e

This will create a cron table, or “crontab file”, which cron will read to find work.
The crontab command looks first for the VISUAL environment variable, then for
the EDITOR environment variable. It will use the editor named in those
variables to provide editing of crontab files. Without one of these environment
variables set, Debian 2.0's crontab uses the ae editor. Other distributions may
have a different default behavior for crontab. Make the changes you desire,
save the file and exit the editor. 

Why do we not edit the crontab file directly? The reason is cron requires a
specific format for its job entries. The crontab command performs syntax
checking before allowing a newly edited crontab file to enter circulation. If the
new crontab has a syntax error, crontab complains and asks if you want to edit
again. To protect the crontab files, the crontab command makes root the owner
of the crontab files.

Listing 1.

To view your newly edited crontab file, use this command:

crontab -l

The output should look something like Listing 1. Each crontab entry provides
either an environment variable or a time-specific cron command. cron sets a
few environment variables automatically. Others, such as MAILTO, can be set
by the user. Normally, cron mails the output of each cron job to its owner. If
you put the line 

MAILTO="fred"

in your crontab file, the output of your cron jobs would go to user fred instead.
More likely, you would want to suppress cron output. If you set MAILTO to null, 

MAILTO=""

then cron will discard the job output. 

The fields in a time-specific cron command appear in this order: minute (0-59
allowed), hour (0-23 allowed), day of month (1-31 allowed), month (1-12 or
names allowed), day of week (0-7 or names allowed, with both 0 and 7

https://secure2.linuxjournal.com/ljarchive/LJ/065/3290l1.html


representing Sunday), and the command to run. The numerical fields also allow
ranges of numbers, wild cards, lists and methods for running cron jobs at every
Nth interval, such as every third hour. The asterisk character works as a wild
card, representing every occurrence of the field's value. For details, see the
crontab(5) manual page.

The example below will run the ls command every minute of the noon hour on
the first day of the month, discarding the output:

MAILTO=""
# Minute Hour Day-Of-Month Month Day-Of-Week
# Command
* 12 1 * * /usr/bin/ls

This next example will run the free command every other hour and mail the
output to fred: 

MAILTO="fred"
* */2 * * * /usr/bin/free

The system-wide crontab, stored in the file /etc/crontab, provides a slightly
different method for running cron jobs. It does not have a special editor, so you
must take extra care when editing it. In addition, it provides a user name field
between the Day-of-Week and Command fields, to run jobs under a user ID
other than root, without having to create a separate crontab file for that user.
Edit it with your favorite editor and save the changes; cron will automatically
update its job list. 

Pre-Configured cron Jobs

The Debian and Red Hat distributions come with several pre-configured cron
jobs to help control disk usage. Other distributions may provide similar help.
The Debian dh_installcron command will install these jobs. Normally, you
should not need to run this command—installing the cron package will take
care of it for you.

These jobs, located in the file /etc/crontab, use the run-parts command to call
all the scripts in directories /etc/cron.daily, /etc/cron.weekly and /etc/
cron.monthly. For the most part, these scripts control disk usage, compressing
and pruning log files in /var/log and cleaning up after indices from the man(1)
command. The package maintainers who created these jobs configured them
to run during the night, normally a slow time for other system activity. Some of
the scripts generate a lot of disk activity, which can slow other I/O-intensive
jobs. If you want them to run at other times, edit /etc/crontab or move the
scripts among the directories that contain them.



Additional Reading

See the list of references in the sidebar for additional reading on cron.
Additionally, the man page for the at facility may prove useful. at provides a
one-time job-scheduling facility. If you do not keep your Linux system running
24 hours per day, you may want to review Anacron, which does not depend on
specific time events to get its work done.

Conclusion

I have provided a brief introduction to the cron facility, a typical part of Linux
and other UNIX operating systems. It will provide a starting point for time-
related work you want your Linux system to perform. In brief, if you want to
schedule repetitive tasks so as not to type the same commands again and
again, use cron.

Resources

Michael S. Keller works as a technical analyst with Sprint Paranet, a wholly
owned subsidiary of Sprint, a nationwide network services provider based in
Houston. He has used UNIX variants for nearly nine years and enjoys
communing with cats, motorcycles and the universe. You may reach him at
mskeller@sprintparanet.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3290s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Red Hat Linux 6.0

Jason Kroll

Issue #65, September 1999

In keeping with the high standards of modern distributions, Red Hat Linux 6.0 is
relatively easy to install, preconfigured, aesthetic and functional. 

• Manufacturer: Red Hat Software, Inc.
• E-mail: sales@redhat.com
• URL: http://www.redhat.com/
• Price: $79.95
• Reviewer: Jason Kroll

Red Hat Linux 6.0 is Red Hat's latest distribution, and it has improved
noticeably since the days of version 5. In keeping with the high standards of
modern distributions, Red Hat Linux 6.0 is relatively easy to install,
preconfigured, aesthetic and functional. It comes with the standard Linux
applications (including Netscape) and also includes a special applications CD,
with over 50 various commercial applications (most of which are demo versions
which expire or are disabled). GNOME (running by default with the
Enlightenment window manager), Red Hat's desktop environment, is well-
configured and attractive. In addition to aesthetic improvements, Red Hat
made some significant technical changes in its newest distribution, including

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.redhat.com


the complete adoption of the EGCS (Experimental GNU Compiler System). Still,
many things will be familiar to users of previous Red Hat releases. 

Installation

Red Hat Linux 6.0 comes with three CDs (and a floppy, just in case), the first
being an auto-booting installer which looks rather like previous Red Hat
installers. It presents three installation options: Workstation-class, Server-class
and Custom. The 400+ page installation guide contains very little information
regarding the installation options, but having tested them, I really recommend
a custom install.

Before proceeding with any kind of installation, however, the installer offers a
choice of eleven languages which are mostly implemented (though some need
more work than others). These are mainly just for the installation process,
although GNOME does support a few languages; so if you install in another
language for the fun of it, your system could end up running in it. After
language selection, the installer offers a choice between installation and
upgrade.

Figure 1. Screen Shot

Upgrading is a rather quick process; a large part of the convenience aspect of
Red Hat is the ability to upgrade, whether one is dealing with individual
packages (via RPM/GnoRPM) or a complete system. Upgrading is rather
automated compared to installation, which presents various options.

The workstation-class installation is quite functional and easy to use but is not
as complete or fun as a custom installation; KDE, among other things, is
noticeably missing. The server-class installation is meant for servers and will be
of little interest except to network enthusiasts. It is not exactly up-to-date, and
still runs FVWM2 (AnotherLevel) instead of the newer desktop environments; it
is reminiscent of Red Hat releases from quite a while ago. The custom
installation is probably what most users would want, and is simple enough to
make if one knows what hardware is inside the machine.

Custom installation allows the user to choose packages either categorically or
one by one; in the latter case, the installer keeps track of dependencies
between packages. The user is also given the choice of which programs to be
launched automatically at startup, and is required to partition his own drives. A
choice of either Disk Druid or fdisk is given for partitioning the drives. Disk
Druid is menu-driven and simple enough, as long as one is familiar with
partitioning; the time-tested fdisk is just as adequate. Although both
partitioning programs perform the same task in basically the same way

https://secure2.linuxjournal.com/ljarchive/LJ/065/3590f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3590f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3590f1.jpg


(selecting partitions, sizes and mount points), using a menuing system seems to
be easier for most people.

Video configuration can be a bit problematic. Curiously, although the lists of
available monitors and video cards are quite long, the installer cannot probe
for the video card. Probing for a card instead of querying the user should not
be very difficult to implement, since X can probe successfully. The video mode
tests failed even though my card and monitor were listed, but after installation,
X worked fine. Also, if one could test various preconfigured monitor
frequencies against the standard X test pattern, a better picture could be had.
Since you will presumably have this Linux system for a while before reinstalling,
it would be worth the effort to have an optimally configured display. Too bad
this option is not available.

If you do not know your hardware, installation can be a hang-up. The only thing
the installer could successfully detect was my mouse; everything else had to be
entered manually. Again, this is fine if you know your hardware, and it is
probably even safer than probing. However, new Linux users to whom Red Hat
is often recommended and people who do not know what is inside their
computers might prefer the computer to figure out for itself what hardware is
present. Certain other installers probe successfully, so accurate probing is
possible. Since ease of use has long been one of Red Hat's main attractions, it
seems the installer could stand to be brought up to a level on a par with the
overall quality of the distribution.

Despite the need to enter hardware information manually, installation is not
exactly difficult and an experienced user could reasonably expect to complete
an installation in approximately thirty minutes. Once the installation process is
at an end, the option is presented to have X start up by default at boot time. If
you answer yes, reboot and log in, you will be greeted by a mysterious footprint
on the desktop, shaped oddly enough like a G with toes.

GNOME

Red Hat has taken an active role in supporting the production of GNOME, a
high-quality desktop environment based entirely on free software. Red Hat
Linux 6.0 installs GNOME on workstation and custom installations. GNOME is
not actually a window manager in itself—it is a desktop environment which
allows you to use the compatible window manager of your choice
(Enlightenment, by default).

One of the particularly nice characteristics of modern distributions is that their
desktop environments come thoroughly configured. This means you can bring
up menus, point and click, drag and drop, etc. without having to configure the
menus, and the menu options actually correspond to the programs on your



system. On Red Hat Linux 6.0, GNOME is better configured than KDE or
AnotherLevel (FVWM2), both of which menus are incorporated into GNOME's
menuing system. GNOME also has the remarkable program GnoRPM, which is
a Red Hat Package Manager for GNOME. This graphical program offers a simple
point-and-click system for installing, upgrading, uninstalling, querying, verifying
and searching through RPM packages. In conjunction with LinuxConf and
various control panels, this makes for easy point-and-click administration and
configuration.

Technical Changes

A large part of the improvement Red Hat made from 5.2 to 6.0 comes from the
technical changes in the various programs which make up the distribution. The
core of the improvement is the 2.2 kernel (2.2.5-15 to be exact), which supports
more hardware and file systems and is even better at networking than previous
Linux kernels. It also has better SMP support and countless other
improvements in areas ranging from networking to frame buffers, and is even
more modular and easier to reconfigure and recompile. Recompilation is less
necessary due to the new modular approach. Developers will likely appreciate
that Red Hat has moved completely to the Experimental GNU Compiler System
(EGCS), which offers advanced platform optimizations, integrated FORTRAN and
a significantly improved C++ compiler. These days, as innovative hardware
solutions push past the limits of conventional desktop processor speed and
storage space, SMP and RAID support are increasingly valuable and, thanks to
the new Linux kernel, available. In conjunction with Glibc 2.1.1 and the latest
stable versions of various libraries and programs at the time of its release, Red
Hat Linux 6.0 is up to date.

Security is an ever-present problem with network computers, and in this
distribution, root access via TELNET has been removed and the X screen
automatically locks when the screen saver comes on. Also, passwords are
shadowed and, optionally, use MD5 encryption (as opposed to DES). For
convenience, console users do have access to peripherals and can reboot,
although this can be changed. Security risks are always a hazard, so it is a good
idea to check periodically for recent patches. In fact, a few small potential
security problems shipped with 6.0; the fixes (via RPM) are on Red Hat's web
site, along with a list of rather minor errata.

Application CD

Included in Red Hat Linux 6.0 and Red Hat EXTRA is an application CD with over
50 Linux applications, ranging from developmental software to productivity
software, specialized commercial applications and more. According to the box,
the CD is valued at over $1,000, and perhaps if it were full of commercial
software instead of disabled and expiring demo versions, it would be worth



that much. Nevertheless, the disc is an amazing testament to the proliferation
of applications available for Linux, and some software packages are mostly or
even fully functional while some don't work at all. The CD should be looked at
as a bonus, because you could just download most of the software over the
Net, if you knew it existed in the first place. The inclusion of commercial demos
with Linux distributions is a good idea, and software vendors might want to
pursue other distributors as well.

Support and Manuals

In the past, the majority of complaints about Red Hat seem to have involved the
issue of support; perhaps this implies that the distribution itself leaves little to
complain about. This time, Red Hat stepped up the efforts to provide support
to registered users of Official Red Hat Linux 6.0. This may partially explain the
rather high price of $79.95 for a collection of mostly free software.

Included with the Red Hat package is a large bright yellow slip of paper stating,
“For Installation Support Go To: http://support.redhat.com”, from which one
might surmise the source for installation support. In order to receive support,
one must first register via Red Hat's web site. The registration program seems
to work, and once registered, a user is entitled to 30 days of installation support
via telephone and 90 days of installation support by way of e-mail. I would
certainly expect that after 90 days, someone would have his system installed.
Actually, support goes a bit further than initial installation; Red Hat is willing to
help in the configuration of printers, sound cards and other hardware such as
floppy and CD-ROM drives. There was no mention of Ethernet help, though this
is usually easier than dealing with sound cards, so I hope Red Hat intends to
help with this too.

Installation will take much longer than thirty minutes if you take the time to
read the 400+ page “Installation Guide” and the 300-page “Getting Started
Guide”. The Installation Guide is a comprehensive walk-through of the
installation process, with a significant space dealing with system configuration
and administration. The Installation Guide is rather thorough and contains
enough information to turn a neophyte into a competent administrator of his
own system. The Getting Started Guide is smaller, simpler and a bit friendlier. It
covers many aspects of Enlightenment and GNOME, X, shell usage,
administration, configuration and the like. Red Hat calls it “easy-to-read”--that is
a fair assessment, to say the least.

In the event that someone finds 30 days of phone support, 90 days of e-mail
support and 700 pages of textual support inadequate, Red Hat offers various
commercial support packages ranging in price from $2,995 to $60,000.
Obviously, these cover more than basic installation.



Conclusion

Red Hat Linux 6.0 is a modern, up-to-date, flexible distribution which finds itself
at home in a number of areas ranging from small servers to home desktops to
the business world. Many businesses and institutions rely on Red Hat, as do
countless home users. At the very least, it has recent versions of packages and
puts libraries in the right places, so things work. It does have a commercial feel
to it—you know when a machine is running Red Hat. Also, it does not take a
minimalist approach, so it could be a bit more complicated than a home user
might want—some might even find it a bit bulky. Actually, for GNOME/
Enlightenment to function in a timely way, 32MB of RAM seems inadequate.
However, the distribution on the whole is reliable and functional. The price is a
bit painful, so one might want to consider the many alternatives. But, if you
need to be sure of a functional system with phone and e-mail support,
manuals, applications and a Red Hat bumper sticker, the price may be worth it.

Jason Kroll spends his weekdays in the product testing lab at Linux Journal
where he is very happy to be working in support of the Linux movement. His
evenings are supposedly spent finishing his economics studies (but not really,
other classes are more fun, you see). When reviewing a distribution, he thinks
it's very important to test all of the games, and wishes distributors would
include more games with their distributions. He can be reached at
info@linuxjournal.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Applixware 4.4.1 for Linux

Dean M. Staff

Issue #65, September 1999

The package has been redesigned, and a WordPerfect-style template for the
keyboard provides all the function and “accelerator” keys for quick reference. 

• Manufacturer: Applix Inc.
• URL: http://www.applix.com/
• Price: $99.00 US
• Reviewer: Dean M. Staff

I came to the Linux world as a user—not a system administrator or a
programmer. I was looking for a more stable alternative to Microsoft Windows.
Once I found Linux, the search for productivity software soon began. I still
needed to interact with others using the typical MS Windows applications, so
importing and exporting to these formats was a priority. I took a serious look at
Applixware and present here the results of my investigation. 

Right out of the box, some changes from version 4.3 are apparent. The package
has been redesigned, and a WordPerfect-style template for the keyboard
provides all the function and “accelerator” keys for quick reference. Someone
definitely put some thought into the preparation of the user's manual. The

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.applix.com


usual glued spine binding has been replaced with a large spiral binding,
allowing the user to either fold the cover over, leaving only the desired page
face up, or lay it flat without the pages flipping over while attempting to use the
computer. The biggest improvement is a single consolidated table of contents
and index for the complete manual. (Version 4.3 had three distinct sections,
each with its own table of contents and index, making it quite difficult to use.)
While many positive improvements have been made, the manual is still lacking
sections referring to Applix Data (the database module), Applix Mail (the built-in
e-mail module) and Applix Builder (the graphical programming module).

Rating

I used the following rating system in regard to importing files to the different
Applixware applications:

***** (Excellent): File was seamlessly imported, with no errors or anomalies
encountered.**** (Good): File was imported, but some formatting was lost.***
(Fair): Import was successful, but all formatting was lost.** (Poor): Import
completed with corrupted data that could be repaired.* (Fail): Import failed or
data was corrupted beyond repair.

Importing to Applix Words ****

I was unable to import a Framemaker 5 file, but this may have to do with the
fact that I used an application other than Framemaker 5 to create the source
file. Importing an RTF file was flawless, and importing Microsoft Word 95 and
Corel WordPerfect 6/7/8 files was nearly flawless, with only one glitch—it added
a couple of tabs after the text on a right-justified paragraph.

Importing to Applix Spreadsheets ***

Importing spreadsheets from other applications was not as clean as in Applix
Words. Microsoft Excel 4 and 95 files were imported with the loss of only an
embedded image, while all cell and data formatting were preserved. Importing
a Lotus 1-2-3 file was not as successful. On a 123-97 file, all data was imported
intact, but some formatting was lost—most notably the borders. On Lotus wk1,
wk3 and Microsoft Excel 3 files, all formatting was lost, but the data was
imported intact. All file formats preserved formulas in the source files, but all
embedded images were lost.

Importing to Applix Presents *

All attempts to import graphics files failed. PowerPoint 4 files were a complete
failure. The procedure actually started for PowerPoint 95, but failed. And the



biggest failure of all—Applix Presents does not even support the import of
Freelance Graphics files.

Importing to Applix Data *

If you want to query an SQL database created with Oracle or Informix, or you
plan to create a database from scratch, you might be able to use Applix Data. If
you are thinking of importing an existing database, forget it because Applix
Data will not even open an industry-standard Dbase III or IV file.

Exporting from Applixware ***

Applixware seems to export better than it imports. Using a text document with
various paragraph and font formats, I was able to export an Applix Words
document to HTML without any errors. It picked up underlining, bold and italics
without a hitch and had no problem with justification.

I exported the same document to Microsoft Word 95/97 format (using RTF),
again without a loss in formatting—even successfully exporting a forced page
break. When exporting to Corel WordPerfect, the only error occurred on full
justification, as it replaced full justification with left justification.

As for Applix Spreadsheets files, it exports basic font formats, data and simple
formulas, but it drops embedded objects such as graphs when exporting to
both Lotus 1-2-3 or Microsoft Excel formats.

Applix Presents files can be exported to Microsoft PowerPoint 97 format, but it
seems to do only simple slide presentations well.

As a standalone productivity suite, the Applixware package is more than
sufficient. It is inexpensive (I've seen it for as little as $159.00 Canadian),
powerful, and in most cases, easy to learn. The major pitfall is the import issue
in which it cannot properly import some of the more popular file formats, most
notably dBase and presentation files. If you plan to use it to create files for the
rest of the world, stick to the word processor and spreadsheet modules. You
will be able to import and export to the most popular formats, if not in native
format, then through RTF.

I deliberately did not review the Applix Mail module, because e-mail clients are
a dime a dozen, and while it is a nice bonus, I would not purchase a productivity
suite for it. I also skipped Applix Builder, since I am not a programmer and
could not provide an informed opinion.

Personally, I feel some major improvements still remain to be made to
Applixware. On its own, Applixware is a very good package, but to be adopted



in the business world, it must be better able to import and export other
formats. In a perfect world, we would all be using Linux. But since we aren't in
that perfect world yet, we still need to be able to play well with others.

Dean Staff is the manager of NovoClub, a computer bookstore in Ottawa,
Ontario, Canada, and can be reached by e-mail at dstaff@echelon.ca .

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux Device Drivers

Mark Bishop

Issue #65, September 1999

Be forewarned, though; if you are not comfortable with C, you won't
understand the examples that are amply spread throughout. 

• Author: Alessandro Rubini
• Publisher: O'Reilly & Associates, Inc.
• E-mail: info@ora.com
• URL: http://www.ora.com/
• Price: $29.95 US
• ISBN: 1-56592-292-1
• Reviewer: Mark Bishop

In the last few years, we have seen an explosion in the number of devices
supported by Linux. If you ever want to know how device drivers work or add
kernel support for a particular device, Linux Device Drivers is the book for you.
Be forewarned, though; if you are not comfortable with C, you won't
understand the examples that are amply spread throughout. Also note that no
matter how good a Linux device driver book really is, it will become outdated
simply due to the rate at which the Linux kernel is developed. Mr. Rubini is
aware of this fact, and throughout the book, he generously notes the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.ora.com


differences between kernel versions when applicable. He even goes so far as to
devote an entire chapter to recent developments in the Linux kernel. 

I found Linux Device Drivers to be very complete in its description of the Linux
kernel versions for which it was written—2.0.x to 2.1.43, which were the most
recent at the time of its initial printing.

This book is roughly divided into two parts. Part One includes chapters 1
through 10 and starts out with a simple “Hello World” module, then moves on
to describe how kernel modules are properly set up. Part One continues
through the entire gambit of modular device programming needed to write a
full-featured driver for a character-oriented device.

Since the audience may not have any experience writing modular device
drivers, a chapter on debugging techniques is included. I found these to be
quite useful, and they helped me to accelerate the development of several
kernel drivers I was writing. One thing I did find baffling is the order in which
several chapters are presented. The one that stands out most is Chapter 10,
which deals primarily with portability issues. This chapter could have been
presented earlier in the book to help maintain the flow the author had
sustained early on.

I found Chapter 9 to be the most useful and the most fun; it covers interrupt
handling. To help facilitate the reader's understanding of how interrupts are
processed and handled, it requires the reader to modify his parallel port by
connecting two pins together. (The parts can be found at your local computer
hardware store for about $3.) Once my parallel port was modified, I was able to
make full use of the examples. Mr. Rubini takes a difficult subject and breaks it
into manageable parts. He does this quite effectively, moving through very
technical topics with great fluidity.

Part Two of Linux Device Drivers covers more advanced topics. These include
block drivers and network interfaces, and how one would write device drivers
specific to them. Part Two also covers memory management and device access
on peripheral buses such as the PCI and ISA bus. It also delves deeper into
topics briefly mentioned in Part One.

Also in Part Two is something I have rarely seen described in other Linux kernel
books—a description of the actual physical layout of the kernel source. Mr.
Rubini approaches this by following the path in which the kernel boots from the
first architecture-independent function (start_kernel) through the init process.
This is also one of those chapters which might have been better placed earlier
in the book, but no matter where it's located, its inclusion is greatly
appreciated.



Linux Device Drivers serves many different purposes. This book will always
serve the developer who wants to expand the number of devices which work
with Linux. Also, you need not have the desire to write a device driver to learn
something from it. All you need is an interest in knowing more about how
devices work with the kernel to provide the services and stability we want. It is a
great piece of work, where the one major drawback is time—this book was
published in February of 1998. Changes made in subsequent printings may be
found at http://www.oreilly.com/catalog/linuxdrive/errata/. I urge Mr. Rubini to
follow up with a second edition, and I plan to be first in line for my copy.

Mark Bishop (mark@bish.net) recently graduated from Southern Illinois
University and moved to Tampa, Florida, where he now has a job in the
engineering field. He is primarily interested in developing embedded
applications. Whenever he can, he works on the MP3 player he designed for his
Jeep.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.oreilly.com/catalog/linuxdrive/errata
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Learning Perl/Tk

Bill Cunningham

Issue #65, September 1999

This book is targeted for those just beginning windows programming in Perl/Tk
on both UNIX and Windows platforms, although veteran programmers will find
a wealth of detailed information in it as well. 

• Author: Nancy Walsh
• Publisher: O'Reilly & Associates
• E-mail: info@ora.com
• URL: http://www.ora.com/
• Price: $32.95 US
• ISBN: 1-56592-314-6
• Reviewed by: Bill W. Cunningham

Learning Perl/Tk, by Nancy Walsh, is the first of what will undoubtedly be many
books on this subject, and it will be a tough act to follow. This book is targeted
for those just beginning windows programming in Perl/Tk on both UNIX and
Windows platforms, although veteran programmers will find a wealth of
detailed information in it as well. 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.ora.com


Learning Perl/Tk is well-written and thoroughly researched. It begins with a
brief history of the Perl and Tk languages. It tells exactly where to download the
Perl/Tk module, how to unpack and install it, and how to test your installation
to see if you are ready to write Perl/Tk programs.

Next is a general discourse on window geometry, and the concepts of the
widget and the event loop. These are details the windows programmer must
deal with that do not apply to the traditional Perl programmer. Ms. Walsh does
a fine job of explaining these concepts in terms anyone can understand.

The majority of the book is devoted to a detailed description of the most
commonly used window widgets: the button, check box, radio button, label,
entry, scrollbar, list box, text box, canvas, scale, menu, frame and composite
widgets such as the dialog box. Virtually every aspect pertaining to these
widgets is covered in the minutest detail: color, placement, size, border size,
style and functionality. Other widgets are available in Perl/Tk, but these are the
most common ones, and in order not to get too far out in left field, the book
limits its focus to these.

The author's code examples are written in an elegant, concise, easy-to-follow
style. For example, the following code creates five text entry widgets, each in a
different relief style, with the style's name displayed in the respective boxes:

foreach (qw/flat groove raised ridge sunken/) {
$e = $mw->Entry(-relief=> $_)->pack(-expand=> 1);
$e->insert('end', $_);
      }

This example appears on page 112 of the book. Throughout, the author
demonstrates an enviable command of the Perl language, particularly the
object-oriented features. 

The book does a great job of bringing the first-time Perl/Tk user up to speed. By
the end of the second chapter, the reader will have at least five fully-functional
windows programs up and running. And for the veteran programmer, the book
goes into a level of detail about the various window widgets which should meet
the most demanding needs.

There is something of a void of information for the intermediate-level
programmer. For example, there is no discussion of how to create a text-entry
widget, get some user input from the widget, and use Perl to do something
useful with the input. The Perl/Tk module does come with many demo
examples that basically fill this gap. I did notice a few minor typos in the book,
but it was obvious even to me (a non-programmer) how to fix them. Almost all
the code runs perfectly. I know, because I typed in and ran each example!



Virtuous (i.e., lazy) programmers can download all the book's code from the
O'Reilly web site (http://www.oreilly.com/catalog/lperltk/).

Learning Perl/Tk provides a simple yet thorough introduction to this newest
method of writing windows programs, and will also be a valuable reference for
the production programmer. There is room for more books on this subject at
the intermediate level.

I believe anyone with an interest in Perl/Tk will benefit from reading this book,
and I recommend it with enthusiasm.

Bill W. Cunningham, Gunnery Sergeant in the U.S. Marine Corps, is a system
administrator with the Second Marine Aircraft Wing, G-7, Cherry Point, NC (the
greatest job in the universe). He likes playing guitar, reading, driving and
spending as much time as possible with his wife and four kids. He can be
reached at bwc@coastalnet.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Letters to the Editor

Various

Issue #65, September 1999

Readers sound off. 

tkdiff

This is in reference to “A Toolbox for the X User” by Christoph Dalitz, May 1999.
In it, Mr. Dalitz mentions the “tkdiff” utility, but seems to base his observations
on an old version. I wanted to alert you to a couple of significant changes,
which may impact tkdiff's usefulness to some users.

Thanks to much work by Bryan Oakley, 3.03 (the latest released version)
contains many features and enhancements relative to the more ubiquitous 2.x
and 1.x releases.

One change in particular addresses the author's observation that “tkdiff can be
invoked only from the shell prompt because it requires file names as
command-line arguments.” This is no longer the case. If tkdiff is invoked
without arguments, it will pop up a dialog box and prompt you for file names
(via text-entry widgets coupled to optional file-selector widgets). As such, tkdiff
is now a suitable candidate for being launched from a toolbar or similar
mechanism which eschews the command line.

Relative to the observation that tkdiff has “no external man page, which
occasionally makes it inconvenient to get usage information”, I would like to
point out that the on-line help does come up automatically, if invalid command-
line parameters are used. This is still inconvenient, but better than having to
explicitly invoke the on-line help system in order to see the help text.

Lastly, on a related note, I've turned over maintenance responsibilities for tkdiff
to Damon Poole of Ede Development Enterprises. Damon graciously
volunteered to maintain and enhance the code on an Open Source basis. The

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


official tkdiff home page is now at http://www.ede.com/free/tkdiff/index.html,
from which this 3.02 release can be obtained. Thank you.

—John M. Klassa klassa@aur.alcatel.com

Bug in Pthread Code

There is a nasty bug in Listing 1 published in “Introduction to Multi-Threaded
Programming” by Brian Masney, May 1999. The line

pthread_t *tide:

should be changed to

pthread_t tide[10];

—Klaus Pedersenklaus.pedersen@nokia.com

Coming of Age

I have followed Linux for four years and wanted to voice my support and
thoughts. I was prompted to write after reading the June Linux Journal. It strikes
me that Linux is at a crossroads of sorts, where identity and maturity need
definition and direction. This point was made in the articles on Linux standards
and were reflective of the development community and its needs. However,
there is another perspective, that of the consumer or end user.

I consider myself to be in this latter community. Labeled as such, I do not
believe that the Linux community has come to terms with an identity or
maturity. As an end user, I am amazed at the wealth of information and
capability that has been developed to date. In many ways, this reflects very well
on the Linux community and should be a great source of pride—well done.
Nevertheless, the question is where to go from here. The “here” is subject to
debate; however, I would argue that the “here” is further adoption by end users
like myself.

We are all well aware of Linux's success as a development platform, Internet
web server, enterprise mail and file server, and specialized supercomputer
platform. Unfortunately, these applications represent a very limited set of
users. What about the end user who operates in the world of Microsoft today?
These users have very different needs than those of a development
community. These users typically see the computer as an appliance. The
computer does things that provide benefit to the user. This type of user sees
the computer like most people see an automobile—get me from point A to
point B, but don't ask me to understand how it happens. I can sense some
developers community taking great pride in using a tool that requires great skill



to master. Unfortunately, end users, for the most part, are not interested in
acquiring those skills.

I'll use my own experience to illustrate the point. I've gone from a distribution
of Linux by InfoMagic in 1995 through Red Hat 5.0, 5.2, Caldera OpenLinux 2.2,
and a soon-to-arrive distribution of Mandrake 6.0. In all of this, I have not yet
abandoned my Windows. This reflects two important limitations of Linux for
me. First, the lack of user-friendly applications, and second, a lack of confidence
in using the operating system. Limitation one is becoming less important with
the maturity of KDE and the availability of Netscape, WordPerfect, StarOffice
and Applixware. This fall's release of Corel Office should be a watershed event.
Nonetheless, limitation two is still daunting.

As I write this, I have just returned from the bookstore with Linux in a Nutshell
and Learning the bash Shell from O'Reilly. Thank God for O'Reilly! These books
and others are part of my growing Linux collection as I try to understand what
the system does. For example, why does the installation of Metro X cause
conflict with the X server as distributed by Caldera? Why do I have to apply a
print offset correction to produce centered text from WordPerfect? Why does
the configuration of printers using Caldera's COAS seem so difficult and
problematic? Why, when I follow the instructions for building a new kernel,
does the kernel not work? These and other problems have haunted me as I try
to use Linux from an end user perspective.

My point here should be obvious and simple: these types of issues are not a
concern when I use Windows. If the Linux community wants to see greater user
adoption, then the community needs to think like an end user. Trust me in
saying that I am an activist end user, having spent hundreds of hours reading
and learning. However, unlike me, most end users will expect simplicity,
reliability and utility. Linux today can deliver reliability; simplicity and utility are
not part of the equation. To put it in perspective, if my mother asked me to
recommend a computer, my answer would be a Wintel machine because I
could walk her through most problems over the phone. With Linux, that would
not be possible.

In sum, I think the Linux community needs to assess which direction it wants to
go in—remaining a specialist operating system supporting networking and
unique applications, or becoming more of an appliance operating system that
users can operate confidently. The time to solidify an identity is now, and the
opportunity to come of age will always be timeless.

—Mark H. Runnels mrunnels@home.com



Great awk Article

What a pleasure to read Mr. Iacona's introductory treatment of awk in the June
issue. I've been exposed to awk in a hard-core UNIX setting (designing SRAM
circuit layout for Motorola), but have not used it myself. Now I design textiles
on the SGI platform (not so far from chip layout as you might think) and need to
manipulate text files. I run LinuxPPC on my PCC PowerCenter 120 Macintosh
clone at home to practice UNIX for work. I'll lean on Mr. Iacona's article, his
clear, well-commented example code and helpful glossary with confidence. I'm
dying to get the O'Reilly books and take on more. A clear, usable, focused
treatment of a daunting subject; well-edited, too. Continue to set your
standards high.

—Four Hewes four@bway.net

Kernel Korner

The information in this month's Kernel Korner (“IP Bandwidth Management” by
Jamal Hadi Salim, June 1999) reminds all of us that there is yet another
dimension to the “free-ness” offered to Linux users: not only the code and
applications in development, but also Linux ISP's.

These ISPs are affecting our ability to move freely. Why? QoS (Quality of Service)
is essentially the end of all-you-can-eat Internet access—no more monthly flat
rates. Oh sure, there's the bare-bones rate, but that's bare, bare bones.
Instead, the more we are willing to pay, the more our ISP will shove down our
lines. What a fair world!

It's a double-whammy. I can remember the good old days (i.e., three years ago)
when we criticized telco's for ripping us off (after all, the customer is considered
“the last mile”); now, ISP's will also be subject to our scorn (if they're not
already), as will the host client/servers (i.e., those Linux boxes we adore so
much).

Sure, QoS implementation is not so much a question of “if” but “when” (it's that
inevitable, my friend). But my teeth gnash at the thought of this
implementation hard-coded into the Linux kernel.

—John K. Joachim Joachimj@usa.net

Rave

I've been a subscriber for a few years but still consider myself a newbie. So far,
my faltering steps toward ever greater Linux mastery are consistently rewarded
by finding out just how rich and robust an OS Linux is. Your magazine really



helps; it's great to feel like I'm part of such a community as LJ serves. Thank you
and your staff for sweating the little stuff.

—Jamie Matthews mattja@iglobal.net

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

More Letters to the Editor,

Smudgy Ink and Page Borders

I got the August issue yesterday, and the letter regarding the black
borders on the Feature pages caught my attention. Having worked here
and there in the publishing business, I feel very qualified to offer the
following alternatives: Instead of using a solid black border, why not use
a 25% border with the screen angled at 60%? Less ink, and it still makes
the pages stand out when looking at the edge of the magazine. Another
possibility is to go ahead and keep a solid black border, but only along
the top of the pages. That way, when the reader is reading it, there isn't
the ink on the left and right edges where the magazine is held. Still
visible from the “outside”, just not all the way around.

Keep up the excellent work. (I know you will anyway, since Linux users
tend to be the type not to put up with a bunch of PR bull.)

—Mark, gus3@bright.net

BTS

In the August 1999 issue, #64, one Lisa Zuckerman
(blueink@netzero.net) wrote in asking why KDE was failing to find
“libstdc++2.9”, as well as asking why vi was telling her that .xinitrc was
not a regular file. The answer given by Mr. Marc Merlin
(marc@merlins.org) was rather incorrect, and not very helpful. So, if I
may, here is the /correct/ answer...

1. Libstdc++ This is the standard C++ library commonly used in Linux,
often it is supplied by GCC. Version 2.9, however, is supplied by egcs
1.1.X, which is not included with Slackware3.6, but IS included with
Slackware4.0

2. ftp://ftp.CDROM.com/.4/linux/slackware-4.0/source/xap/kde contains
all the necessary files, and a “kdebuild.sh” script, needed to build
and install KDE on a Slackware system.

3. Switching distributions is not really necessary.
4. About .xinitrc

First, check the permissions on the file 

   ls -col ~/.xinitrc

Here is mine: 

   -rwx------   1 jeremy        552 Nov  5 15:40 .Xclients

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


you should see something similar, most important is the “rwx” at the
beginning, that means that the owner can “r”ead, “w”rite, and e“x”ecute
the file. 
Second, if the permissions are correct, try this

   file ~/.xinitrc

Which should produce results similar to the following: 

   /home/jeremy/.xinitrc: ASCII text

If it doesn't, then it has surely become corrupted. If this is the case, back
it up, then create a new one (This example assumes you wish to start
KDE by default) 

   mv ~/.xinitrc ~/.old.xinitrc
   echo "exec startkde" > ~/.xinitrc

—Jeremy Crabtree, crc3419@delphi.com

Thinkpad 750CS Article

I was glad see the article in the March issue with information on the
750CS. I bought a Thinkpad 750CS for my wife last week, but had a great
amount of trouble with the floppy. I ended up buying another laptop (a
755CSE) that had a 1.44MB floppy in it and put the hard drives in the 755
during my Linux install to get at a 1.44MB floppy. Thanks for the info on
the floppy. I thought I had a useless 2.88MB disk drive until now.

I've since put a Raytheon Wireless LAN card in both systems to make
mobile web terminals. Very nice, I can go to the pool and surf the web or
reach the other laptop if it is nearby.

I have a few question though. One is _when_ to run tpdualscan... I can
get it to work if I run tpdualscan manually then startx or xdm, but when I
try to put it in my /etc/X11/xinit/xserverrc or rc.boot it runs but X looks
the same as before.

Also, any luck with the on board sound? I identified the chip set as an
mwave, but have had no luck in getting it to work.

BTW, I got the 750CS for $99 and 755CSE for $298 at a local refurbishing
shop. I love these old laptops, and they work great under Linux... not too
many platform can run on a 486 and perform so well. ;) Again, thanks for
the great article, and keep up the good work.

Chris McClimans, chris@mcclimans.net



Opinion: LJ and the future

Hi, I'm a new LJ reader. I like your magazine but I have the following
comments (and I hope, some helpful tips):

• The feature articles are much too techy; this month's issue I read
everything EXCEPT the features. Linux is a great product and has
some fascinating uses but, unless you want your target audience
confined to R&D types in Universities, most people will be turned
off. SUGGESTION: Have more features related to real-world solutions
that a greater audience can relate to. ie. Business and consumer
oriented features.

• Not enough product hype: Your mission statement is to promote the
use of Linux so why not add some excitement to it? Pit products
against one-another, show performance benchmarks, etc.
Advertisers love this stuff. You don't have to be as unabashedly
propagandistic as some Windows oriented mags but adopting some
traits from a proven formula would help. Hype gets consumers/
readers excited about products and that in turn gets advertisers/
vendors excited about your magazine. SUGGESTIONS: More articles
showcasing specific products: tone of articles in general should be
more “pro-consumption” (ie. You NEED to upgrade) & not too techy;

Now I realize this probably isn't news to you and that you are caught
between keeping existing readers happy with the current format and
trying to gain a bigger market with a different pitch. However, the Linux
phenomenon is growing all the time and I believe more and more
consumers will want a magazine with the aforementioned characteristics.
The challenge for The Linux Journal is to inevitably evolve along with the
Open Source Revolution. I feel that it is perfectly positioned to be THE
AUTHORITY on Linux product reviews ala PC Magazine in the Windows
world. 
In closing, I hope that my comments are helpful even if you don't
necessarily agree with them. Here's hoping LJ becomes a big success!

—S.McPherson, smcpherson@microworks.a

“Letters to the editor”

After visiting the Red Hat, SuSE and Debian web sites, I realized that
everyone seems to avoid posting any graphic icons of “tux” the Linux
penguin.

Its interesting how commercialization of Linux can cause people to avoid
using the primary Linux logo (tux).

An interesting article for LJ might be “Linux Marketing Strategies &
Tactics” or something similar...

I think if we stop and take a look at how Linux is being marketed, we
would see disturbing trends that are emerging everyday..

Larry Ewing, the creator of the tux logo has a web site:



http://www.isc.tamu.edu/~lewing/linux/index.html

—Shiloh Costa, ap296@torfree.net

LTE letter

George Saich
—*Cheers*+ for your well-considered essay in the LJ e-mail column!
While not out of place, your apology for your “extreme” stance earns my
verbal support.

It is my belief that Extremism in the Persuit of Computing Freedom is no
vice. I would suggest that something like California's Community College
System should be recruited to provide this training (trainers need State
Instructor's Certification, and students gain a modest State subsidy) at
minimal end-user expense (and the “required manuals” for courses
should be LDP-standard downloadable documentation) in keeping with
the Free Software Spirit.

Do other states have Community College, continuing-education-type,
public-access education systems set up? Here in the SF Bay Area, anyone
can take a good, 5-unit college-credit training course for one quarter for
well under a hundred dollars. Similar training courses (taught by private
training groups) cost _many_ hundreds and often cram the whole session
into three weeks, usually requiring students to take time off work. The
difference between these two approaches is bloody obvious!

—Eric Palmquist, epalm@blueneptune.com

Article Review for issue 2!

Article: Linux System Administration: You as System Administrator, Issue
2

Mark:
I just read your 3-pager on System Admin' on the net. I sincerely enjoyed
your style of writing.

As an educator in this industry for over 15 years ( CNI/MCT, others) I
pride myself in the ability to “never have loose scope” of the first-time
users perception of a particular subject matter,... especially one of this
nature and magnitude. The analogies used to “link” the concepts of the
Unix/Linux file system using the DOS environment were excellent. Thank
you for publishing this on the net!

I am currently evaluating other such documentation as well as co-
developing as series of courses in Linux ( re-inventing the wheel to “my”
way) and look forward to reading more of your work...Again..Thanx!

—Tom Foster, tfoster@frostbank.com



Article: “The Point Really is Free Beer”

I am astounded that your usually top-class publication has included an
editorial such as that named above in your July issue of Linux Journal.

To my reading it is extremely inflammatory, making sweeping general
statements that lack an appropriate level of reasoned or logical
exposition (which I would normally expect of your magazine). It appears
to be (in my opinion) one person's petty ranting about his feelings on the
GNU General Public License (GPL), shrouded in flamboyant “high moral”
talk of public good.

I guess the title really sums it up - to Mr Hughes, the most important
thing is “no cost software” as opposed to software guaranteeing the (long
term) freedoms and rights of an individual to be a moral citizen (as
exemplified by the GPL license).

Of course, it is up to Mr Hughes to show his true colors (which I believe
may well be bright) when his company's “soon to be announced” first
products and services are released. If he “has been worried about
software infrastructure ever since” I suspect he may well offer something
wholesome to society. I am however sceptical, based on the apparent
contradictions (or perhaps just misunderstandings) in his editorial.

The proof will be in the 'beer' that he offers. If it is just 'beer', ie. software
provided at “no cost”, yet restricting my freedoms as a moral, caring
member of the human race, I personally will not touch it (nor will any of
the 25-odd employees under my management at my 'development
company' (to use the same petty legitimizer)). However if Mr Hughes'
ultimate intentions are positive and good, I will be the first to support his
work. Certainly I have heard only positive information about the
Cypherpunks, of which he was a founder. We could perhaps all take heed
not to trip over our own exalted egos (yes, myself included).

Please put your “editorial advisory board” (as listed on page 4) to work in
ensuring the top quality content usually expected of your magazine.

Sincerely (and a little (in)“flamed”, and surprised),
—Zenaan Harkness, zen@getsystems.com

Credibility

I am rather disturbed by several articles that appear in the May 1999
issue. If Linux Journal continues to publish programming articles by
technicians who work “at a local computer store” or book reviews by high
school students, I won't be renewing my subscription again. The first
case is “Introduction to Multi-Threaded Programming” by Brian Masney. A
quick look at the sample code provided is all it takes to see what kind of
“authority” Mr. Masney is. Besides the uninitialized pointer in main() that
produces an immediate segmentation fault it is quite clear that this guy
never learned a thing about neatness. Publishing this kind of code will
never do anything to promote readable code. As for “Review: Linux
Programmer's Reference” by Richard Petersen I am completely



dumbfounded as to why reviews are being handled by high school
students. I am not trying to denigrate Mr. Petersen's knowledge or ability
but I expect articles in this magazine to be written by authors who are
more experienced and can provide a viewpoint that is more relevant to
those of us who have spent years in the trenches on major league
projects. If LJ can't come up with contributions by more credible authors I
don't think that I will be the only one deserting. Just my 2 cents.

—Bill Lewis, satan@ns.net

Beginners section

With all the new people looking into using Linux, I recommend that Linux
Journal add a larger section for the novice Linux user. If you keep this
section separate from he rest of the magazine, the experienced Linux
users can easily ignore it. However, it would be very beneficial for new
Linux users.

—joe lerch, ljr@globalfrontiers.com

Issues with the August issue...

First, my compliments on a nice magazine. I've been a subscriber since
the second issue. I have always appreciated the clean approach you have
taken with the publication.

That said, I'm a bit disappointed at the direction LJ seems to be taking.
The first thing I noticed was the foldout advertisement for Penguin
Computing. ARGH! I thought LJ would remain pure. I detest the standard
computer rags for the use of reply cards and “fat ads”. The first thing I do
if I ever read one of those magazines is rip out all the cards and ads. I
suppose this is an economically driven decision to keep subscription
prices down, but please don't do it. I would rather pay an extra couple of
dollars per year to avoid this annoying, wasteful, scourge :)

It seems the layout is moving to that of those “other” publications as
well. Your “Up Front” section is difficult to follow. Trying to forge a path
through a myriad of sidebars, arrows, boxes, etc., makes it difficult to
pick out the important information. This practice doesn't seem to have
infested the main part of the journal (the articles) and for that I'm
grateful. Please limit the font-o-philia and layout fluff to the the front few
pages. It felt like I was watching MTV with frequent cuts, fast pans, and
no content. Ouch! (A minor beef: the lengths of the bars on the bar
graphs depicted do not correlate with the numbers indicated. Confusing.)

Also, I second a reader that noted the smudging of feature articles with
the thick black border. Perhaps some of us excrete solvents through our
thumbs that are effective in dissolving the ink used in LJ?

My last comment is on the “Best of Technical Support”. I'm rather
dismayed at the level of the responses. Many of the questions chosen for
printing are fundamental newbie questions, but often the responses are



cryptic, cursory, and probably do more harm than good. Not that I
purport to be an expert, but these responses should be screened for
accuracy and completeness before being printed.

Ok, enough griping. I applaud your work and will continue to read LJ. Just
please remain true to the clean, informative approach. I'm sure you
never hear from the silent majority that has no pet peeves worth
complaining about!

—Steve Singleton, ssinglet@coe.edu

A Letter for the “Letters” Column

I must respectfully disagree with Troy Davidson in his letter, “Standards”,
of the August 99 issue.

As to the HP 722c printer, I dare say it can be made to work with any
Linux distribution. I use an HP 672c at home with Red Hat 5.1, and these
2 printers are fairly similar. Try www.experts-exchange.com, and I wager
that within 2 days you will have info on exactly how to fix that printer.
This web forum is tech support beyond anything commercially available.

I don't personally see the Linux community as trying to beat or destroy
Microsoft (at least not overtly). Linux appears to me to be a collective
effort to produce the best operating system and associated applications
possible. The motivation behind this effort is more of an artistic challenge
than an economic target of opportunity.

If Linux is better than NT and Win98/5, and I believe it is, then it's only a
matter of time until it wins over the market share on its own merits—
without a declared war against Microsoft.

Respectfully,

—Bill W. Cunningham, CunninghamBW@2MAWCP.usmc.mil

Linux Expo

Hello, my name is Dave and on the 24th of may I sent the message
below to the Linux Expo coordinators. I still have not received a reply and
I am still disgusted at the unfair treatment I received at the expo. Since
the expo, I have stopped using Linux, stopped promoting Linux, and
switched to OpenBSD. I feel Linux as a whole is turning into a huge
moneymaking scheme just because it happens to be the popular “flavor
of the day”. I will continue my subscription to Linux Journal, in my
opinion, it is simply the best computer magazine in publication. Thank
you for your time.

Sent to linuxexpo.com on 24 May 99—Hello, I
attended the Linux Expo this weekend with my
two daughters ages eight and seven. You can
imagine my shock when I was asked to pay full



admission price for them. How can you expect to
charge for people who don't understand anything
that's going on inside? I paid the price, because I
wanted to attend but was unable to purchase
anything as laying out the additional $40 for my
two daughters cleaned me out. I was very upset
by this and DO NOT plan to attend next years
event. Unless, of course, I am given a refund of
the $40 and you change your policy of charging
full admission for children. 

—David J. Pote SSgt USAF, david.pote@seymourjohnson.af.mil

Article in August Linux Journal

I was disappointed to see that your article “Graphical Toolkits for Linux
Programs” overlooked the very powerful and free Fast Light Tool Kit
(FLTK). FLTK is an excellent GUI widget set with corresponding GUI builder
that works natively with both the win32 and the X/11 API. It also
extensively supports OpenGL. The widgets are very high quality, fast and
compact. The whole library is released under the LGPL, which makes it a
much better choice for commercial development than Qt or Motif.

Check out http://fltk.easysw.com for more information on this excellent,
free GUI widget set and GUI builder. Sincerely,

—Darren Humphrey, dhumphre@simulation.com

Multi-Threaded Programming

I have a comment regarding the good introductory article on page 74 of
your May 1999 issue.

Mr. Masney states “...threads...will automatically take advantage of
machines with multiple processors.” Based on my experience, this is not
[yet] true.

I used pthreads to design & code an image resampling benchmark. I ran
this program on a 14-processor SGI (IRIX64 V6.2) & on a 12-processor
Alpha (OSF1 V4.0). In both cases vendor-OS specific function calls had to
be added to ensure each thread executed on a different processor. The
SunSoft document Multithreaded Programming Guide indicates the same
is true for Solaris 2.4.

In conversation with systems analysts at the facilities I used, I learned
that the POSIX pthread design did not include standards for
implementing multi-processing. I do not know if it has since been
updated.

I initially developed the benchmark algorithm & program on my 486/
Linux desktop (no threads). I ported the code to both SunOS (no threads)
& Solaris (pthreads) inside of an hour. The code quickly ported to the SGI
& Alpha requiring minimal consultation with system analysts. The best



performance was achieved using vendor thread libraries. Conversion
from pthreads to vendor threads required no major code alteration.

—Robert Geer, bgeer@xmission.com

PCI Modem letters-to-editor

In response to Greg Bailey's correction concerning SOME PCI modems
being Linux-friendly, I feel compelled to point out that the the problem
lies in “WinModems” - modems designed to operate only with MS
Windows, through a LICENSED INTERFACE to MS Windows. These
modems are often bundled with systems or sold very inexpensively. The
fact that 3Com has a “generic” 56K PCI modem with a street price of
$100 and a PCI “LoseModem” for only $60 makes me wonder what
incentives may exist in the marketplace for making Windows-only
modems.

Thanks for the great magazine!

—Peter Cavender, cavender@sover.net

PS/2 mouse problems FYI

I have installed them both, and have found a common problem in both. I
think it is a kernel problem....

I have a Compaq 5630 Presario with 1 serial com1 port, 1 ps/2 mouse
port, a parallel printer port, with plenty of memory and a quantum
bigfoot noisy as hell ultra IDE drive.

I also have an OEM Compaq branded 2 button ps/2 mouse , and a 3
button MouseSystem dual-mode serial/ps/2 “white” mouse both mice
work perfect in “all” modes of operation both serial and ps/2 on my
windows partition. Same can not be said of my Linux partitions.

I began by installing Red Hat with my MouseSystem mouse on the serial
port. This was a good and lucky choice, as I was later to discover. After
installation it occurred to me that I might need to use my serial port for
something else, so I tried switching my MouseSystem mouse to the ps/2
port and changing my config to use it. Dead meat city, as soon as I tried
to use the mouse on the ps/2 port, the entire keyboard locked up and my
system was dead. This was Red Hat 6.0.

Later when I tried to install caldera with the fancy lizard install which
tries to detect the mouse, I had the same problem.

This occurs also with my Compaq branded 2 button ps/2 mouse.

There are a ton of problem reports in the caldera user-forum archives
about problems with ps/2 mice.



One person made the observation that the “paraport” driver was
reporting the detection of a “ps/2” device... This would seem like a big
red flag to me shouting KERNEL PROBLEM !!!

I don't understand why caldera does not pass these problems along to
somebody who works with the kernel or its drivers, so that it can get
fixed.

Could you please notify somebody in Kernel land, that we are having a
problem out here in the wilderness

—Steve Bovy, Steve.Bovy@sterling.com

“PCI modems”

I sure thought by now someone would have pointed out the problem, but
from the “Compounding Errors” letter and response, it doesn't look like it.

All you said about PCI modems would have been right, if only you had
used the term “Winmodem” instead. I don't doubt that some (or maybe
even all, I never saw one myself) Winmodem actually uses the PCI bus,
but that's rather irrelevant to the problem.

A Winmodem is a modem that doesn't include most of the CPU and
software needed to do anything decent; instead, it has software (typically
only for Windows) to get the host CPU to do it instead. This supposedly
makes for a cheaper modem. Unfortunately, you pay for it by having a
chunk taken out of your main CPU, but hey, we all know Windows users
don't *really* multitask anyway, right? And nobody needs docs on how to
do this for other OSes, because Windows is all there is, right?

One guy recently claimed on linux-kernel to have access to the necessary
docs and source to write a driver for one specific Winmodem for Linux. I
have no idea if anything will ever come out of this, however.

Oh, and there also seem to be Winprinters around with the exact same
problem, I hear.

So: please don't blame the PCI bus for this!

—Kai Henningsen, kaih@khms.westfalen.de

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

UpFRONT

Doc Searls

Issue #65, September 1999

LJ Index, Strictly On-Line and more.

LJ INDEX—September 1999

• Speed achieved by the 350-node Cplant98 cluster running Linux at Sandia
National Laboratory: 125.2GFLOPS

• Where 125.2GFLOPS places the Sandia system in the current TOP 500 list
of supercomputers: 53

• Position of microsoft.com among the top sources of visitors to the new
linux.com: 1

• Number of microsoft.com visitors in the first two weeks of linux.com's
operation: 15,000

• Total age of Phat Linux's two founders: 30

• Number of Net-connected computers whose spare CPU cycles are
devoted to searching for extraterrestrial intelligence by SETI: 625,253

• Total CPU time of all those computers: 99,799,890 hr 45 min 38.8 sec

(11,392.68 years)

• Number of “results” returned by all that terrestrial intelligence: 2,258,824

• Percentage of those results produced by Linux platforms: 12

• Position of Linux among all platforms in results performance: 2
• Professional attendees at Linux Expo Paris 99: 5000

• Number of exhibitors and vendors at Linux Expo Paris 99: 87

Sources

1. Phat Linux, www.phatlinux.com/about.html
2. VA Linux Systems, http://www.valinuxsystems.com/
3. TOP 500, http://www.top500.org/

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.phatlinux.com/about.html
http://www.valinuxsystems.com
http://www.top500.org


4. Linux Today, www.linuxtoday.com/stories/6797.html?nn

5. SETI site, June 15, 1999, http://setiathome.ssl.berkeley.edu/
6. Linux Expo Paris press release, June 23, 1999

ROCK & RULE

vi rocks. It also rules. So says Vassilii's Editors Sucks-Rules-O-Meter, which
mines the verbs on Altavista and pronounces vi the winner over Emacs and all
the other editors as a subject of those two superlatives. As of July 3, vi had a
350/10 rules/sucks ratio. And it looks like Linus isn't the only one out there who
hates Emacs—a sentiment he shared with us on a recent panel that also
featured Emacs creator Richard Stallman. Emacs' rules/sucks ratio is 22/59. This
meter can be found at http://www.tarunz.org/~vassilii/srom/and is updated
weekly. Thanks to Vassilii Khachaturov.

BARREL SCRAPINGS

Want a new domain name? Good luck. We are at the bottom of the .com barrel,
and the .net and .org barrels must be getting fairly low too. While the urban
legend says every word in the dictionary has been sold for .com use, “misstep”
is still there. So is “dodder”. A lot of two-word combos (such as hunkerdown)
are gone as well, but a few (such as stupiddog) are still there. But your chances
of getting the domain you want are being reduced every second by the sharks
who buy domains from Network Solutions for $70 and then sell them for far
higher prices (up to millions of US$) to the unfortunates who came too late to
buy direct.

Thus, your only two strategic naming choices are anonymous or strange—or
both. Why not create a front company with a camouflage name like
“Symnetix.com”, while your actual business will be an enterprise NT
replacement service called “Bizfloss.com”? If you do that, remember who your
friends are when you file for that IPO (initial public offering).

To save you a bit of work, I went through the familiar whois routine to scope
out the possibilities. They are mighty slim. Let's say you are in the bug zapper
business and want “bzzt.com”. Well, Allan Henning of Stockton, California has
already grabbed that one. How about dropping a z? Nope; “bzt.com” belongs to
Hovinga Holding in the Netherlands. How about adding a z? Wrong again;
“bzzzt.com” has gone to the Mikluhomaklai Sensation Corp. in Omsk, Siberia.

http://www.linuxtoday.com/stories/6797.html?nn
http://setiathome.ssl.berkeley.edu
http://www.tarunz.org/~vassilii/srom
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f2.large.jpg


Okay, how about one more z? Voilà! You can have it. Now prepare to spend the
rest of your business life saying, “that's bzzzzt.com with four Z's.”

• awfulstrange.com
• glassgargle.com
• spizanch.com
• girlfriendfromhell.com
• loadolinux.com
• thirdwife.com
• rsh2god.com
• yerassismine.com
• pantywad.com
• tuxdisk.com
• niddle.com
• stoptalking.org
• stopmakingsense.com
• thunderingnerd.com
• 2manyservers.com
• nowgoaway.com
• stilldead.org
• avatato.com
• pocato.com
• thbzzz.com
• birdgrinder.com
• crosslips.com
• isobaptist.com
• umess.edu
• bozoretentive.com
• fubar.mil
• overdive.com
• deathpatty.com
• halfcat.com
• twitchingannoyances.com
• zonecontact.org
• flatoutbad.com
• placentamix.com
• hatefuljavapages.com
• java2die4.com



• aaaarg.com
• obytheway.com
• freedeath.com
• buildingcozy.com
• condomcrobar.com

—Doc Searls

LINUX USERS

According to International Data Corporation (IDC), there are more than 10
million Linux users worldwide. In 1998, the Linux market grew by 212 percent,
and nearly 18 percent of all server hardware licenses sold last year were Linux,
according to IDC. Another consulting firm, NetCraft, estimates that Linux or
other Open Source software currently runs on more than half of all web servers
worldwide.

Some interesting companies/organizations using Linux include:

• Boeing
• Mercedes-Benz AG
• Yellow Cab Service Corporation
• Canadian National Railways
• United States Postal Service
• National Disaster Communication Response Team
• World Council of Churches
• Sony Electronics

Source: Mercury Information Technology, Inc., http://www.m-tech.ab.ca/linux-
biz/

STRICTLY ON-LINE 

Adventure by Joseph Pranevich is a nostalgic look at the old “Colossal Cave”
game and its various iterations—a fun game and a fun article. Mr. Pranevich
tells us a bit of his and the game's history and how to play it.

Remotely Monitoring a Satellite Instrument by Guy Beaver is the story of a
small aerospace company involved in a NASA-funded satellite mission to study
the atmosphere. A major portion of this experiment involves calibrating and
testing the instrument. While done on the ground, the calibrations are
monitored remotely using a Linux-based system. Most of the software used

http://www.m-tech.ab.ca/linux-biz
http://www.m-tech.ab.ca/linux-biz


was originally Windows-based, but has now been ported to Linux to take
advantage of the many open-source products available.

First UNIX/Linux National Competition Held in Ljubljana, Slovenia by Primoz
Peterlin and Ales Kosir introduces this competition and the winners. They also
present both the problems and the answers that made up the test.

Linux Apprentice: Filters by Paul Dunne gives instructions for simple data
manipulation commands in Linux. Covered commands include grep, egrep, tr,
sort, head and tail. Mr. Dunne also takes a look at programmable filters such as
sed and awk along with their use with pipes.

A book review of The Unified Modeling Language User Guide by Geoff Glasson.
If you are a programmer involved in producing object-oriented software
systems, you will want to know how this book can help you.

EVENTS

• LinuxWorld Conference & Expo, http://www.linuxworldexpo.com/, August
9-12 in San Jose, CA.

• O'Reilly Open Source Convention, http://conferences.oreilly.com/, August
21-24 in Monterey, CA.

• 8th USENIX Security Symposium, www.usenix.org/events/sec99, August
23-26 in Washington, D.C.

• 3rd annual Atlanta Linux Showcase, http://www.linuxshowcase.org/, to be
held October 12-16 in Atlanta, GA.

GAMES FOCUS

Although certain people may believe applications, applications and applications
are the key to world domination, some of us know the true key—the reason we
became interested in computers—is games. While much of our karmic lineage
may come from the punch-card generation of computer hackers, for whom so
many games may not have been available, many of us grew up in the days of
early home machines such as the Spectrum, Commodore, Atari and Amiga.
Some younger hackers may even hail from the days of 3-D. (Imagine having
grown up with that technology.) Despite slow processors, limited colors, small
memories and other obstacles of primitive technology, the years saw
numerous ingenious masterpieces, elegant studies in working within
limitations, classic games to which we returned time and again, sometimes
poking (on BASIC machines) or manipulating with hex editors and
disassemblers, but mostly just playing.

http://www.linuxworldexpo.com
http://conferences.oreilly.com
http://www.usenix.org/events/sec99
http://www.linuxshowcase.org


Now Linux is developing its own classic games, in a time when limitations on
processor speed, color graphics, sound, multitasking, memory, disk space, and
networking hardly even seem to exist. Like the classics of old, Linux games have
a character all their own; since the games are often developed by a single
person or a small group of people, they tend to have a personal, hand-made
quality which is missing from their slick, commercial counterparts on other
platforms.

Rather than technological limitations, the main constraint today seems to be
development time. Although open-source cooperation solves a large part of
this problem, another part of the Linux answer is playability, the mysterious
quality possessed by games of old which captured our attentions and
imaginations despite 1MHz processors and graphics that weren't even vector-
shaded 3-D. One legitimate Linux classic which exemplifies this essence of
playability, and is an excellent game for inaugurating this new gaming section,
is Jan Hubicka's Koules, found at www.paru.cas.cz/~hubicka/koules/English/
koules.html.

Koules for X version 1.4 

The Dark Applepolisher, you see, is up to no good—he has sent his spherical
forces to conquer Earth and claim its resources. In order to defend us from
these evil Koules, you will have to bump them out of each of the 100 sectors
(and finally confront the Dark Applepolisher). Fortunately, you have been
transformed into a yellow beach ball. Well, according to Hubicka, mutated into
a chest with eyes to make your job easier, of course.

Although the task may seem simple at first, there will come many varieties of
Koules, each with different weights and sizes and mysterious abilities. Black
holes and stars and other natural dangers appear as well, and the Koules keep
coming! Once the first few sectors are cleared, special Koule ablities and secret
weapons begin to appear and the game becomes more exciting and visually
interesting. Fortunately, you too can gain special abilities from Koule deserters
who give you more weight, more speed and even extra lives. A well-stocked
beach ball can weigh enough to wipe out even enormous Koules in a single
blow.

Koules is simply an excellent idea which, when developed, becomes
fantastically playable. Koules supports up to five players, at a single terminal or
over a network, and is more fun with multiple players. Keyboard, mouse and
joystick are supported, as well as SVGA and X. Sound support is excellent and
exists on multiple platforms, and there are multiple difficulty levels.

http://www.paru.cas.cz/~hubicka/koules/English/koules.html
http://www.paru.cas.cz/~hubicka/koules/English/koules.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f6.jpg


Even though Koules was developed by a single person and is completely free, it
has the finished quality of a professional game along with the personality of a
small project. I recommend getting some friends together on a rainy Saturday,
defending Earth from and finally defeating the Dark Applepolisher, and going
out for pizza to celebrate the victory. When you get home, you can start again!

Also, check out the Linux Game Tome at http://happypenguin.org/.

—Jason Kroll

MOST POPULAR WINDOW MANAGER

Matt Chapman's web pages at http://www.plig.org/xwinman/are devoted to
Window Managers and offer the browser a chance to vote for his favorite. Here
are the results as of June 22.

ET PHONE TUX

What kind of computers are doing the most listening for extraterrestrial
intelligence when they're not busy grinding cycles on earthbound work? The
first answer is obvious. The second isn't (unless you're one of us, of course).
The following graph shows the stats from http://setiathome.ssl.berkeley.edu/as
of the most recent summer solstice.

http://happypenguin.org
http://www.plig.org/xwinman
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f3.large.jpg
http://setiathome.ssl.berkeley.edu
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f1.large.jpg


Thinkful Wishing

No-partition Windows-based Linux Installs: Seems like everybody's trying to
take the fun out of installing Linux. They want to make it easy. They want to
give away the ending and spare us the story. They want to make the hacker's
OS as hack-free as possible.

Well, maybe they have a point. And if they do, why not go one better? Why not
make Linux installable on any Windows box as it stands? Click on your
download file and install the sucker right there, from Windows, without
partitioning the hard drive.

Sound crazy? Not to Cameron Cooper and Keith Broere, the founders of Phat
Linux. These guys have figured out a way to load a full Linux distribution from
inside Windows. When it's over, you've got a two-OS box.

The punchline? This isn't new to either of these guys. They've been on the case
since they were both 14 years old—last year. Next fall they'll be sophomores in
high school. But not the same high school. In fact, not even the same country.
Cameron lives in Winnipeg, Manitoba and Keith lives in Sandusky, Ohio (“near
the amusement park”). Two guys, two countries, one cool new distribution.
Check it out at http://www.phatlinux.com/.

Internet Floppies Revisited: No sooner thought than done. Right on the heels of
last month's Internet Floppy idea, the guys at FreeDiskSpace.com have
mounted a set of sites that works for all the major platforms, including Linux.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f1.large.jpg
http://www.phatlinux.com


Want extra disk storage—a place to store up to 25MB of files you can pull down
from any browser anywhere? Check out http://www.FreeLinuxSpace.com/.
Signup is a breeze.

The next step is to make this a value-add for ISPs and anybody else with the
space and a way to make money with it. But wait a minute. They do that, too,
with an affiliates program, banners and sponsors for the folders in your
FreeLinuxSpace directory.

Now, how long will we have to wait for file I/O over the Net? Another whole
month?

—Bruce Fryer

Earth-shaking Harbingers

It was kind of amusing, really, fielding brickbats from testosterone-pumped
twenty-somethings for whom money and Microsoft's survival are so central
that they have trouble grokking that anyone can truly think outside that box.
On some subjects their brains just shut down—the style reminded me a lot of
the anonymous cowards on Slashdot.

—Eric Raymond to Norm Jacobowitz, June 22, discussing Eric's Microsoft speech
(Complete interview can be found at linuxresources.com/articles/linux_review/
19990623.html.)

You'd Understand if you Majored in Pheesoox

At PC Forum in 1997, Jim Barksdale, then the President and CEO of Netscape,
said he got the idea for opening his company's browser source code from “this
guy Raymond”, and identified the originator of Linux as “Linus Pauling”. He
wasn't too far off, because Linus Torvalds' parents actually named their boy
after the famous American Nobel prize winner and vitamin C wacko.

And there began the tale of two pronunciations that have done nothing but
permute. There is not only no consensus on how to pronounce Linux, but this
condition appears to derive from an equal uncertainty about how to pronounce
Linus. The Web is full of sound files in which Linus says, “Hi, my name is
Leenoos Torvahlds and I pronounce Leenooks as Leenooks.” More or less.
That's Jim Choi's phoneticization of the recording.

But let's face it: that's not complicated enough. Since there is only a one-letter
difference between Linus and Linux, we thought we'd see how well the two
mapped across the Web by searching for the coincidence of Linus and Linux
with various phonetic spellings of the same. As you can see, the results are

http://www.FreeLinuxSpace.com
http://linuxresources.com/articles/linux_review/19990623.html
http://linuxresources.com/articles/linux_review/19990623.html


equally absorbing and inconclusive, providing plenty of grist for the
disagreement mill.

Oh, by the way, Lin-ux appears to be the winner, with 72 pages showing this
pronunciation.

Linus/Linux Pronunciations

VENDOR NEWS

The Linux Professional Institute LPI ( http://www.lpi.org/), an industry-wide
group developing a professional certification program for Linux, is pleased to
announce the creation of its corporate sponsorship program and a number of
early sponsors. Several new members have been added to its Advisory Council,
including IBM, ExecuTrain and CompUSA. Two sponsorship plans, one for
corporations and one for individuals, have been introduced to allow anyone to
assist the LPI in its goal of creating a high-quality, vendor-neutral program. The
LPI aims to deliver its first certification exams in July 1999.

Ecrix Corporation( http://www.vxatape.com/) announced a key partnership with
Penguin Computing Inc.( http://www.penguincomputing.com/), a company
focused exclusively on turn-key Linux solutions. Penguin will offer Ecrix's VXA-1
tape drive on all of its Linux servers, providing a new data backup and restore
option for its customers. The VXA-1 features a SCSI-2 interface and storage

https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f4.large.jpg
http://www.lpi.org
http://www.vxatape.com
http://www.penguincomputing.com


capacity of 66GB and transfers data at 6MB/second. VXA tape cartridges are
available in two capacities: the V17 stores 66GB and the V6 stores 24GB.

Cygnus Solutions announced the availability of Sourceware CD, a subscription
program for the open-source software projects hosted by Cygnus, at http://
sourceware.cygnus.com/. The Sourceware CD provides convenient access to
the latest open-source technologies, such as eCos (Embedded Cygnus
Operating System), the EGCS compiler, GDB debugger and Cygwin.

Pacific HiTech( http://www.turbolinux.com/) announced it has officially changed
its name to TurboLinux, Inc. This change in corporate identity marks the next
milestone in the company's ramp-up of its North American operations after
announcements in May of partnerships with IBM and Computer Associates.
TurboLinux is a global player in the Linux industry with offices in the U.S., Japan,
China and Australia. Its product is currently the fastest-growing operating
system platform in Japan. When TurboLinux 3.0 was introduced in Asia in
December, it outsold Windows NT (2000) at Japanese retail point-of-sale outlets,
according to the technology analyst firm Computer News.

Venture capital firm Kleiner Perkins Caufield and Byers has invested in 
Linuxcare( http://www.linuxcare.com/), a San Francisco-based provider of
technical support for Linux. Kleiner Perkins' general partner Ted Schlein is now
a member of Linuxcare's board of directors. As part of the investment deal,
Fernand Sarrat, former chief executive of Cylink, is Linuxcare's new Chief
Executive. Arthur Tyde, Linuxcare's founder, will become Executive Vice
President.

SuSE Linux 6.1 is now available at Best Buy, Borders, CompUSA, Fry's, Hastings,
Micro Center and Waldenbooks—over 1700 locations nationwide. SuSE Linux
can be found in the Operating Systems section of software retailers and in the
Computer Books and Software sections of bookstores. SuSE Linux 6.1 features
the 2.2.5 kernel and a comprehensive set of applications for home, office,
technical and business users.

SuSE GmbH( http://www.suse.com/), the parent company of SuSE Inc., began
offering a Business Partner Program targeted specifically at Linux system
integrators and consultants. This program is in addition to the recently
announced VAR and ISV Partner Programs launched at Spring Comdex '99 by
SuSE Inc. The Business Partner Program includes priority support, training, a
moderated private on-line forum, and access to a knowledge base, among
other features. Qualified Partners are those who seek to offer Linux services
and want to benefit from association with the SuSE brand.

http://sourceware.cygnus.com
http://sourceware.cygnus.com
http://www.turbolinux.com
http://www.linuxcare.com
http://www.suse.com


O'Reilly & Associates, Digital Education Systems(DigitalEd) and 
barnesandnoble.com have signed an agreement for barnesandnoble.com to
resell O'Reilly/DigitalEd web-based courses. As part of the agreement,
barnesandnoble.com will be the exclusive on-line bookstore reselling the
courses. The O'Reilly/DigitalEd courses, based on O'Reilly's best-selling technical
books, provide a self-paced on-line learning experience that takes full
advantage of the Web's interactivity. barnesandnoble.com will offer 12 courses
in O'Reilly's web technology series, plus Introduction to the Palm Pilot.

Tripwire Security Systems( http://www.visualcomputing.com/) opened new
offices in Washington DC, Chicago and San Francisco to support rapidly growing
sales efforts across the U.S., as well as customers in those regions. Tripwire also
announced a distributor agreement with Matsushita Inter-Techno Co. in Japan
to create broader market awareness for TSS' Tripwire File Integrity Assessment
software. The software can identify corrupted systems and files throughout the
network, so the servers or workstations can be taken off-line and repaired
quickly, minimizing down time and system administration time.

Stop the Presses

OpenSource Forum, a two-day conference on Linux and other emerging open-
source software for IT executives, was held on June 30 and July 1 in Austin,
Texas. This event, which I attended, was capably presented by Ziff-Davis.

This was a completely different experience for me than attending shows such
as LinuxWorld or Linux Expo. The attendees were dressed casually, but were
definitely business and professional people—not the hardcore Linux faithful.
These people were there to find alternatives to Windows and determine
whether open source was a good fit for their companies. Their minds were
open, but not made up.

Keynote speeches by Eric Raymond, Ransom Love and Jon “maddog” Hall were
enlightening and gave a good positive start to the proceedings. Eric discussed
open-source business models and how to decide if and when to go open or
stay closed. Ransom talked about the shift from mainframes to PCs (right-
shifting) and the current shift to Internet devices (left-shifting), noting Linux is
the perfect Internet device because of its capability to be pared down to a very
small footprint, its stability, easy customization, high performance and low cost
to implement and maintain. Jon discussed the various ways to make money
with Linux and advised companies to “put an ad in Linux Journal”.

User Friendly Cartoon 

Other talks presented a different side. In particular, Jonathan Eunice, President
of Illuminata, proclaimed that for large enterprise applications, Linux was

http://www.visualcomputing.com
https://secure2.linuxjournal.com/ljarchive/LJ/065/3584f5.jpg


definitely not “enterprise-ready” and “free, open-source software is not a
panacea”. He pointed out that the market demands a standard for something it
can depend on, that UNIX failed because of fracturing due to not being able to
agree on open standards, and that when time is of the essence and skills are
limited, paying for a commercial product is the way to go.

Z-D's theme for the show was “Build Your Business with Open Source” and the
auditorium was decorated as a construction site. Flashing yellow lights onstage
proved to be a bit distracting. Attendance seemed low compared to the Expos
and could be numbered in the hundreds rather than the thousands, although I
did not get any final count. Still, it was a good conference—one that provided a
much-needed platform for Linux and Open Source to strut their stuff for the
business world.

—Marjorie Richardson

Readers' Choice Awards

It's that time of year again—time to vote for your favorite products in our
Readers' Choice Awards. Voting will be held from September 1 through October
15 on the Linux Journal web site, www.linuxjournal.com/. Help your favorite
products receive the fame and adulation they deserve—visit the site and fill out
the entry form. In the immortal words of James Hoffa, “Vote early and vote
often.” Winners will be announced in our January 2000 issue.

Rumor Mill: Though neither camp would substantiate the rumor, word has it
Adobe Systems, Inc. has shown interest in purchasing Corel Corporation. We're
sure Adobe would love to hear your opinions on this one.

Factoid: How do penguins sleep? Some species return to their burrows on land
for a few hours of rest, but most penguins take only short naps. Some penguins
actually sleep at sea, although this has not yet been observed. Overall, they
sleep very little—much like programmers!

Another Famous Linus: Linus Van Pelt: better known simply as “Linus”. Famous 
Peanuts character in the long-running strip by Charles Schultz. Noted for
trademark “security blanket” and thumb-sucking. Turns 47 on September 19th.
Words to live by: “I love mankind. It's people I can't stand.”

http://www.linuxjournal.com/


Rumor Mill: James Sasser, the U.S. Ambassador to China, has blamed much of
the tension between the two countries on the recent proliferation of “1999:
Year of the Penguin” T-shirts. Graphics and T-shirt designer Jesse Judd was
unavailable for comment, having retreated to the Olympic Mountains outside
Seattle.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The New Building Trade

Doc Searls

Issue #65, September 1999

Doc on building. 

My friend Frank Saelua is a builder. Back in the old country—in his case, Samoa
—Frank taught math. I have no idea how much he knows about math, but I do
know he is fully capable of building anything or fixing any building. To put it
another way, Frank hacks buildings. 

Frank was the foreman of the crew who built our house. This was no ordinary
construction job. The architect was a 78-year-old, who had been an apprentice
of Frank Lloyd Wright and had many of the Great Man's qualities, including the
prickly perversity behind such lines as “It's the job of the architect to bankrupt
the builder.” While the house was a remodeling job, it was also completely
original, turning a one-story ranch into a two-story modern, with cantilevered
decks, whole walls of custom-made glass and almost nothing found in a catalog
or at Home Depot.

Of course, mistakes were made, as they always are, and minds were changed.
Much of the kitchen had to be redone. Pipes in the wrong places had to be
moved. A bedroom wall bulged strangely and had to be flattened.

What amazed me was that Frank could look at all these problems—walls,
windows, pipes and floors—as if they were modeling clay. As if nothing was a
permanent structure. As if making or altering a building were merely a matter
of tools and time. Need a door moved? Sure; stay out of the way and we'll do it
this afternoon. Sorry about the dust.

I didn't fully understand the similarity between hacking Linux and hacking
buildings until our own chief hacker and publisher, Phil Hughes, stayed at our
place over the past few days, fixing just about everything that didn't work. This
included my home-brew FM transmitter, which had baffled me for nearly a year
(and I'm not stupid—except next to guys like Phil and our readers). Armed with

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


a schematic, a meter and a soldering iron, he fixed the thing in less time than it
took him to tell me how bad my tools were and what I should do to replace
them. Not much different than his constant put-downs of all editing tools that
don't measure up to vi.

Where Phil did his best work was on our Linux box, a no-name 133MHz PC
clone. Using vi and other software tools, Phil turned it into a mean, clean Linux
machine. When he was done, this 133MHz clone was routing e-mail, serving
web pages, hosting files for an office full of Macs and PCs, and serving as a
desktop for reading and writing .doc, .xls and .ppt files. In other words, he
made it into a real Linux system. I submit that this is less an example of Linux
doing good work than of a good worker using Linux and UNIX-grade tools to do
what lesser materials and tools won't allow.

Phil looked at our Macs the way Frank loooked at the home tool-boxes in our
garage, each filled with amateur-grade implements from Sears and Orchard
Supply. He made me realize I know even less about building real computing
solutions (in the literal sense of that hackneyed word) than I do about building
houses. I also realized only those who truly know the virtues of vi and other
“Real Tools” are in a position not just to solve problems, but to build a better
world.

For proof, look at the Internet. Much of what we know and love about the
Internet—such as the way it moves mail and serves up pages—was built by
guys who love to solve hard problems with good tools. These are guys who look
at computing problems the way Frank Saelua looks at a bad wall.

Of course, there is far more to the Internet than Sendmail and Apache. But I
submit there is something highly significant about the success of those
solutions—two applications truly deserving of the label—that isn't highly
obvious, and that is the matter of origins. There is something about where
those problem solvers came from which gave their solutions an enormous
scope.

Where they came from was the UNIX world. Back in 1994, when I got my first
working account with an ISP, I had a hard time getting my head around all the
things my stupid old Macintosh could suddenly do all at once: browsing in
multiple windows; archie, gopher and TELNET sessions; file transfers and even
web service, thanks to Chuck Shotten's freshly hacked WebStar. One day, I was
on the phone with one of the geeks who built the ISP when he interrupted me
and said, “You gotta understand: this is UNIX. You can do lots of stuff at once. In
fact, there's just about no limit to what you can do.” At the time, his whole
business was built on cheap, used Sun machines and a pile of free software.



There's just about no limit to what you can do. Combine the scope of UNIX with
a problem-solver's mentality and you've got a future that's equally promising
and hard to see from the non-UNIX perspective. Trying to anticipate that future
with non-UNIX concepts is like trying to frame a skyscraper with nothing but
two-by-fours and sheet rock. And this is what Microsoft is up against right now.
Whatever its ambitions, Microsoft will always come from the desktop. From the
client. From one person working alone with a personal computer.

The future of computing won't be built by a company, even though we'll call it
an industry. It will be built by builders and companies of builders. Both will
operate on UNIX-informed concepts of not just operating systems and
development models, but of understanding and solving problems and—
critically, because this is a first—of doing business.

This new building trade won't be limited by one vendor's monopolistic
insistence that everything be built only with its materials and tools. It won't be
made out of one vendor's pre-fab parts. Most of all, it won't be built on shaky
foundations that nobody can improve because their bricks and mortar can be
touched only by their own manufacturer.

At too many companies today, even the best builders are limited by software
and tools they can get only from the aisles of Microsoft Depot. This will end.
Now the software business will turn into a real building trade, because the
whole conversation will be liberated from hegemonistic corporate agendas by
the builders themselves. Where they'll come from is the UNIX world view—one
where there's just about no limit to what you can do.

This new trade is about designing, assembling, reassembling and fixing
structures that are good because good professionals using good tools and
materials are doing the work and learning constantly from each other about
how to do it better—and doing it for the love of the work far more than the
money.

Enabling this community is fundamental to everything we do at Linux Journal.
Many of our writers are just readers who step forward because they have
useful stories to tell. Calling them freelancers doesn't cover their value. Eric
Kidd puts it this way in a post at Scripting.com: “For those of you who aren't
familiar with Linux Journal, it is one of the best geek magazines currently
available. In an age when Dr. Dobb's and Byte have utterly forsaken their
technical roots, LJ still publishes actual source code—in some issues, well over
half the articles have sidebars with program fragments. The articles are written
by members of the Linux community.”



So there it is. You made us what we are, and for that, we owe you a hearty
thanks. Now let's get back to work.

Doc Searls (info@linuxjournal.com) is a Senior Editor at Linux Journal. He also
gives us marketing advice we take quite seriously. He telecomputes from
Northern California—nice job if you can get it.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

New Products

Ellen Dahl

Issue #65, September 1999

AccuRev, SQL Anywhere Studio, Pogo Linux Systems and more. 

AccuRev

Ede Development Enterprises, Inc. announced AccuRev, the only software
configuration management tool that automatically tracks all aspects of
software code changes without imposing any strict development rules or
requiring any additional resources, special knowledge or effort. AccuRev's
transaction-based database and hot backups guard organizations against data
loss due to hardware, network and power failures. AccuRev is available on
Linux (Intel and Power PC) and on several other platforms. The cost for a single-
user license is $749 US and includes one year of support and updates.

Contact: Ede Development Enterprises, Inc., 350 Haverhill Street, North
Reading, MA 01864, 800-383-8170, 978-276-3443 (fax), info@ede.com, http://
www.ede.com/.

SQL Anywhere Studio

Sybase, Inc. announced the industry's first mobile and embedded database for
Linux, Sybase SQL Anywhere Studio. Sybase's Linux version leverages Linux's
enterprise-class reliability and performance on low-cost hardware, such as
work group servers, monitoring systems, edge servers or point-of-sale devices.
SQL Anywhere Studio enables users to synchronize data seamlessly from
enterprise servers and work group servers to laptops and hand-held computing
and embedded devices. It is available for $399 US (one user) or $999 US (five
users), and supports Red Hat Linux 5.1 and 5.2.

Contact: Sybase, Inc., 6475 Christie Ave., Emeryville, CA 94608, 510-922-3555,
http://www.sybase.com/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.ede.com
http://www.ede.com


Pogo Linux Systems

BuyPogo.Com now offers the reliability and power of the Linux operating
system at an affordable price. In July, the company began offering the $299
Pogo and the $599 Pogo Pro through its web site. BuyPogo.Com is targeting the
needs of consumers and small business owners who desire the reliability and
value of Linux.

Contact: Agenda Technology Group, BuyPogo.com, 555 Bryant St., Palo Alto, CA
94303, 888-828-POGO, http://www.buypogo.com/.

Thin-Server Appliance Software

Network Concierge Inc. introduced the industry's first build-it-yourself Linux
thin-server (appliance) software for the small/medium SOHO, school and home
network markets. The software provides an easy-to-install, easy-to-use, easy-to-
administer browser-based graphical user interface, wizard and on-line
installation guide. It can be installed on a spare/new, custom, standard or rack-
mountable PC server to build a dedicated, single or multi-function, thin-server

http://www.buypogo.com


appliance that can be configured as a gateway, e-mail, file, print, web, proxy
server, etc. Price is $99 US per network server license.

Contact: Network Concierge Inc., PO Box 1429, Framingham, MA 01701,
877-876-1169, sales@nc4u.com, http://www.nc4u.com/.

Code Fusion

Cygnus Solutions unveiled Cygnus Code Fusion for Linux, the industry's highest
performance, most complete Integrated Development Environment (IDE) for
Linux developers. The Code Fusion IDE is optimized for the Intel2 architecture
and integrates the C, C++ and Java3 programming languages with a robust
graphical user interface. Built on top of GNUPro, Cygnus Code Fusion supports
all major Linux distributions. It is priced at $299 US.

Contact: Cygnus Solutions, 1325 Chesapeake Terrace, Sunnyvale, CA 94089,
408-542-9600, 408-542-9699 (fax), info@cygnus.com, http://www.cygnus.com/
linux/.

HOOPS/AFC

Spatial Inc. and Tech Soft America (TSA) announced the availability of ACIS-
enabled HOOPS/AFC from TSA. HOOPS/AFC is a commercial-grade application
development framework which enables software developers to create high-
performance 3-D modeling applications for Linux and other platforms. The
framework of HOOPS integrates ACIS with several user interface toolkits,
ensuring optimal design and rendering performance of applications built on
these technologies. Please contact Spatial Technology for pricing.

Contact: Spatial Technology Inc., 2425 55th Street, Suite 100, Boulder, CO
80301-5704, 303-544-2900, 303-544-3000 (fax), info@spatial.com, http://
www.spatial.com/.

Multiprotocol Routers

ImageStream Internet Solutions unveiled four new Linux-based multiprotocol
routers that deliver high performance, high port density and high availability at
prices up to 40% less than competing routers. The new ImageStream routers
include the single-slot R1, the four-slot Rebel Router, the twelve-slot Gateway
Router and the eighteen-slot Enterprise Router. ImageStream routers integrate
WAN products from SDL Communications, Inc., which provide support for
56/64K DDS, fractional and full T1/E1, as well as fractional and full T3/E3
network connections. Please contact ImageStream for product pricing.

http://www.nc4u.com
http://www.cygnus.com/linux
http://www.cygnus.com/linux
http://www.spatial.com
http://www.spatial.com


Contact: ImageStream Internet Solutions, 7900 East 8th Road, Plymouth, IN
46563, 800-813-5123, 219-935-8488 (fax), sales@imagestream-is.com, http://
www.imagestream-is.com/.

iASP

Halcyon Software introduced the Instant ASP (iASP) which lets developers
deploy Active Server Pages (ASP) or JavaServer Pages (JSP) on all leading Java-
enabled operating system platforms, web servers and application servers. A
free developer version of iASP, which offers limited concurrent sessions, is
available at Halcyon's web site. The price of the standard edition is $495 US. As
an open-deployment framework, iASP gives developers true cross-platform
deployment capabilities on leading server and operating system platforms,
including Linux.

Contact: Halcyon Software, 50 W. San Fernando St. #1015, San Jose, CA 95113,
408-998-1998, 408-998-1922 (fax), sales@halcyonsoft.com, http://
www.halcyonsoftware.com/.

LinkScan 5.4 Workstation and Server

Electronic Software Publishing Corporation (Elsop) introduced a new version of
LinkScan, 5.4, which includes a new low-cost Workstation version and a
graphical user interface for windowing systems. It operates on all UNIX servers
including Linux. LinkScan requires web server software and Perl 5. Free fully
functional evaluation copies of LinkScan 5.4 can be downloaded from the
company's web site. LinkScan Workstation is a single-user implementation
designed for individual developers in large enterprises and organizations
having smaller web sites of up to 300 documents. A LinkScan Workstation
license is $300 US.

LinkScan Server is the complete multi-user, enterprise LinkScan
implementation and includes LinkScan/Dispatch. It can handle large web sites
comprising 250,000 HTML documents and/or 100,000 external links. A LinkScan
5.4 Server license is $750 US.

Contact: Electronic Software Publishing Corporation, 209-391-9446 (fax),
linkscan@elsop.com, http://www.elsop.com/.

http://www.imagestream-is.com
http://www.imagestream-is.com
http://www.halcyonsoftware.com
http://www.halcyonsoftware.com
http://www.elsop.com


XML Pro v2.0

Vervet Logic announced the release of XML Pro v2.0, the next version of the
popular extensible Markup Language editor. The upgrade is available via the
Vervet web site. Registered users of XML Pro can upgrade from v1.2 free of
charge. Priced at $174.95 US for the CD-ROM and $149.95 US for download,
XML Pro v2.0 offers many new features including full W3C XML 1.0 compliance,
integration of the IBM XML4J parser, drag and drop, undo, ability to change
document encoding, View DTD and Java 2 (JDK 1.2.1) support. The XML Pro/
Near & Far Designer bundle is available for $299 US from both Vervet Logic and
Microstar. Supported platforms include Linux.

Contact: Vervet Logic, 501 North Morton, Suite 211, Bloomington, IN 47404,
812-856-5270, 812-855-4506 (fax), sales@vervet.com, http://www.vervet.com/.

RS2000 Remote Access Card

Ariel Corporation announced its PCI-based RS2000 remote access card for PCs
running Linux. Together, Linux and the RS2000 provide a scalable, low-cost,
high-availability platform for adding high-density V.34, 56K and Basic Rate ISDN
remote access to enterprise systems and ISP points of presence. It combines
dual T1/PRI interfaces with 24 V.90 modems on a single PCI plug-in card. The
RS2000 is available immediately from Ariel for a list price of $6995 US.

Ariel also announced a new driver development kit (DDK) that makes it easy for
OEMs to integrate Ariel's high-density PCI and CompactPCI remote access cards
with the operating system of their choice. The DDK is part of Ariel's new OEM
Starter Kit, which includes the DDK, an RS2000 or RS2000C card, Windows NT,
Linux and a five-year warranty with spare-in-the-air support. Pricing starts at
$8795 US.

Contact: Ariel Corporation, 2540 Route 130, Cranbury, NJ 08512, 609-860-2900,
609-860-1155 (fax), info@ariel.com, http://www.ariel.com/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.vervet.com
http://www.ariel.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Best of Technical Support

Various

Issue #65, September 1999

Our experts answer your technical questions. 

Adding New Users

I am having extreme difficulty adding users on Red Hat 5.1. I've used various
methods to add them to my system via the adduser command and through
various X control-panel programs. When I add them, everything seems to go
well, and they exist when I look them up after I created them. My problem is
that I can't log in without being root. If I attempt to log in as a user, it will say
“login incorrect”, as if I typed in the wrong password or user name, which is not
the case. I have tried numerous times and am frustrated since I cannot get any
users to work on my system. —Anthony Dipaula, dipaula@udel.edu

You will need to check two files. The first is /etc/passwd. Make sure each user
has a valid shell and home directory. Then look at /etc/login.conf. This defines
login control settings, and you might have a setting that prevents non-root
logins on the console. —Chad Robinson, chadr@brt.com

File Type

Can someone tell me what the hyphen after a file name indicates? Two
examples are in /etc: passwd- and group-. Thanks in advance for the answer. —
George R. Boyko, grb99@nni.com

These are backups made by the utilities that manage these files. You can most
likely delete them safely, but it's also a good idea to keep them around.
Otherwise, if your passwd file ever becomes corrupted, you will be unable to
log in, and rebuilding it is always a pain if you don't have a good copy lying
around. —Chad Robinson, chadr@brt.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Voice/Faxmodem Problem

I have a multi-platform computer running Windows 95, Windows NT 4.0 and
SuSE Linux (kernel 2.0.36). My problem is that I don't know how to install the
Plug and Play modem on Linux. With the first two operating systems (Windows
95 and NT), the modem works just fine. I tried many ways of installing the
modem using the Isa PNP tools. It recognizes the modem, but I still have
trouble setting up the port. I read some of the HOWTOs and they don't help me
much. They say to set up the modem with the setserial command, but I don't
know how to use this command. In the Windows NT 4.0 setup, my modem is
installed with the following parameters: COM5, IRQ 07, Input/Output Range
02E8 to 02EF.

Can someone tell me how to set up my modem on Linux? Or how to set up the
modem using the setserial command? It is a 3Com US Robotics 56K Voice
Faxmodem. —Manuel Enrique, phrotos@email.com

COM5 is usually (not always) a clue that your modem isn't a modem but a
winmodem, which would therefore be useless with anything other than
Windows.

Now, if it really is a modem, you should find out which port it is on as far as
Linux is concerned (probably ttyS2) with dmesg | grep ttyS right after boot.
Then configure the interrupt and the port number like this:

setserial /dev/ttyS2 port 0x3E8 irq 2

substituting the right values for your card. —Marc Merlin, marc@merlins.org 

Java Crashing Netscape?

I am somewhat more than a newbie, but when it comes to things I don't know, I
am clueless. I am running on Red Hat 6.0, and Netscape Communicator 4.5.
Whenever I go to a Java web site, like linux.com or yahoo.com, Netscape will
crash; that is, it will just disappear. If I run Netscape in a terminal ./netscape, it
will also disappear whenever I go to a Java site. But in the terminal, it will say
“bus error”. What does this mean? I know I enabled Java in my setting, but how
can I fix this? —Eric Zabinski, diablo@elnet.com

Netscape has been known to crash for a variety of reasons, many of them
linked to Javascript and especially Java. I recommend you try upgrading to
Netscape 4.61, or downgrading to Netscape 4.08. —Marc Merlin,
marc@merlins.org



PPP and Network Configuration

I recently accomplished my first successful Linux install, Red Hat 5.2. I installed
PPP software, but thought network configuration should be done only for NIC-
equipped machines, not ones just doing dialup, so I didn't perform the network
configuration at that time.

Although I have subsequently edited a raft of PPP-related files using the
HOWTOs, books and the suggestions of an ISP, I don't get the expected PPP
“garbage” (40-character frames with frequent { characters) in response to a 
pppd command from the command-line prompt. Does this clearly mean that I
don't have PPP support properly installed and need to reinstall or add via a
package manager? Or would this also occur with errors in the configuration
files (like host.deny or host.allow or ...)? —Stephen S. Rinsler,
70353.714@compuserve.com

You should be able to create the PPP connection with netcfg, which you can
launch from the control panel that should be there by default when you log in
as root and launch X (type control-panel otherwise). You also have the option of
using linuxconf to create your PPP connection. —Marc Merlin,
marc@merlins.org

Mounting NFS

I need to implement NFS (Network File System) from my Linux host to a WinNT
Server for files access. I have Linux Red Hat 5.2 installed on a Pentium 133 MHz
and 24MB RAM machine. I also installed the NFS services (client and server). In
a server machine, I have Windows NT 4.0. I read the book TCP/IP Illustrated Vol.
1 by Richard Stevens (chapter 29 talks about NFS), so I am a beginner of the
protocol. When I try to mount an NFS link, the following error appears:

mount: RPC: Port mapper failure - RPC: Unable to send

Can you help me? —Ing. Juan Salazar Velasco, jsalazar@merkafon.com 

The easiest way to do this is not with NFS, but with Samba, which you can get at
samba.anu.edu.au. By installing Samba on your Linux box, you will be able to
use smbclient to access your Windows NT server, and the combination of nmbd

and smbd to allow your NT server to access files on your Linux box. This works
for printers, too.

NFS services require special configuration in the Windows NT server (and
usually additional software), and often aren't as fast because the native
protocols to each type of server (SMB for NT and NFS for UNIX) were designed

http://samba.anu.edu.au


with somewhat different intentions in mind. In my experience, UNIX emulates
SMB better than NT emulates NFS. —Chad Robinson, chadr@brt.com

It's not clear to me which machine is the NFS server. If it's Linux, then most
likely the portmapper isn't running. Type:

/etc/rc.d/init.d/portmap restart

Also, make sure that rpc.nfsd and rpc.mountd are running on your machine. 

If the server is NT, type:

showmount -e name_of_nt_server

and as long as you don't get suitable output from it, your NT server isn't
configured correctly. —Marc Merlin, marc@merlins.org 

Hard Drive Problems

While trying to install Linux 5.2 from the Linux For Dummies book, I have
somehow locked myself and the install program out of it. Once you have
partitioned a drive partially for Linux, how do you get back in and straighten out
any mess you may have made? The install floppy or the CD-ROM have nothing
on them that I can access from the DOS prompt or from the DOS program 
fdisk, which, by the way, says there is an error reading the disk and won't let me
in. Also, DiskDruid won't let me back in either. Can you help? —“Budskie”,
Budskie@email.msn.com

I would guess that you somehow damaged your partition table, but this is
tough to tell without looking further at the drive. You may wish to try a different
tool, such as the fdisk program that comes with the Slackware package. It is a
more raw tool, and while it may be harder to use, it probably won't completely
stop you from getting to your drive.

I've seen problems like this come from misunderstandings about the LBA
(logical block addressing) setting in the BIOS for a drive. Unfortunately, without
knowing more about what exactly has happened, I can tell you only how to
completely wipe out what you've done so you can reload your system. (The
adage about backups comes to mind here.) If you do go this route, you would
want to use a more basic tool (such as the fdisk that ships with Slackware) to
remove all of the Linux partitions on your drive in the hopes of recovering your
DOS information. Failing that, you could always remove them all and re-install
Windows to return to a stable state, then try again. —Chad Robinson,
chadr@brt.com

Archive Index Issue Table of Contents 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html


    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Adventure

Joseph Pranevich

Issue #65, September 1999

A trip down gaming's memory lane with an enthusiastic, long-time player. 

Adventure is an old game and one that has been known by many names:
''Adventure'', “Colossal Cave”, and the simplistic abbreviation “Advent”. As
games go, it is indeed a classic, having sparked an entirely new tangent of game
development in the early days of the gaming industry. Its effects can still be felt
today. 

I sat down this morning to write a review of a game. At some point, I figured I'd
tell about its strengths and weaknesses. In the end, I'd probably assign it a
value in stars or thumbs or joysticks or some other arbitrary measurement of
quality. However, assigning a letter of quality to this game is nearly as
anachronistic as seeing The Illiad on Oprah's booklist; it is simply inappropriate
and demeans the true quality of the work. So instead, I'm going to tell you what
this game has meant to me, a little about where it came from, and how it
shaped the Quake III world in which we live today. We've come a long way from
the early days of text adventures—or have we?

My Story

It was 1989 and I was 10. The end of the eighties was upon us, and we all
looked with trepidation to the coming decade and the closing years of our
millennium. The Bangles played “Walk Like an Egyptian” to hordes of onlookers
not interested in the nostalgia of the moment. The economy was in a deep
recession, and with the Cold War and movies like War Games, people were
naturally wary of what the coming years would bring. The Berlin Wall fell that
year, and we all wondered what more the future would bring. Well, I didn't
wonder. I was 10, what do you expect?

Instead, I was concentrating on my own life. Already the budding geek (before
the term became a compliment), I went out and hunted my butterflies (tilted

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


my windmills) and enjoyed life. I had a Commodore 64 at the time, and thought
it was the coolest thing in the world, but it never affected me. It was fun,
certainly. I knew how to program simple things in Basic. I could make balloons
float around on the screen. I knew that if I typed “SYS 64738”, the whole thing
would reboot. But it never grew beyond a tinker toy to me—it never awakened
my inner geek.

That changed, of course. My father bought me a game package he had pulled
from the bargain bin. It was a set of two 5.25-inch floppies from Broderbund
(the covered wagon people) entitled “Golden Oldies Volume 1.” Loading it up, I
was surprised to find a collection of four “classics” of the day: Adventure, Eliza,
Life and Pong. My mother decided she liked Eliza the best and would
continually attempt to convince the poor thing that she was a beach ball or
something similar. I found my passion in Adventure, a little game that
transported me into a world filled with scary little dwarves and myriad
treasures, all for the taking, if the young spelunker was up to the challenge.
Needless to say, I never beat the game. I rarely drew maps, and when I did, I
routinely forgot which direction was east. I had managed to memorize a large
portion of the game, but in retrospect I don't think I ever truly got it. Maybe it
was because I was too busy experiencing the world to really want to win. (Or
more likely, because I was young and stupid, but leave me to rose-tint my world
however I want, please.) Eventually, my old copy of Adventure developed bad
sectors and I put it to rest.

Several times later in life, I would rediscover these games I loved. I did
eventually get to play Zork (a version of Adventure) for the Apple II, and found it
richly gratifying, but too similar to the game I left behind. Other games I loved:
King's Quest, Quest for Glory and the early Sierra masterpieces. Somehow,
even with their fancy four-color pictures and their beeps, they never
transported me to a world in the same way my first Adventure did. I
rediscovered Adventure when I finally turned to the “dark side” and was given a
386 and a modem to play with. It was just as I remembered it, except free from
a local BBS. I played and played and mapped it a little, but I still never beat it.
Life had a tendency to intrude and I put it away again, a cherished childhood
game to relive later.

I was happy to rediscover my game in the BSD Gamespack (/usr/games/) that
ships with many Linux distributions, including Red Hat. It was like meeting a
childhood friend again on the street. Now I'd like to introduce it to you.

History of Adventure

The game of Adventure has a long history, dating back to the earliest days of
modern computing. In the beginning (1972), there was Will Crowther. He was a
programmer, caver and role-player (Dungeons and Dragons, in particular).



Faced with boredom (the motivational force behind many a good program), a
desire to create something for his daughter and his assorted talents, he set out
to create a game based on his explorations of the Mammoth and Flint Ridge
cave systems in Kentucky. This game included many of the features of the later
versions and included descriptions and room names taken directly from the
caves in the real world.

A couple of years later, Don Woods discovered the game and added a number
of fantasy elements to the plot including pesky dwarves, a dragon and whatnot.
His primary inspiration was fantasy literature (such as the Lord of the Rings
trilogy), and Adventure was never to be the same again.

Many other coders added bits and pieces after that point. This may be one of
the earliest examples of open-source gaming. The game Adventure could be
one of a dozen or more variants, each with minor scoring differences and
occasional major additions. By and large, all Adventures are created equal.

An Evolutionary “Dead End”?

Most people, while writing game reviews, don't have the luxury of jumping
ahead 30 years and seeing how a particular piece of software affected the
computing landscape. I do have this luxury.

The games of today, at first glance, are not even remotely similar to the games
of yesteryear. Space Invaders yielded to Quake and Rogue to Diablo. Are these
games fundamentally different from their legacy counterparts? Take a close
look and you will find relatively little difference, except for the quality of the
graphics engine. Early in the process, game manufacturers discovered that
graphics sell. In the early days, black and white games yielded to those with
color and then yielded to those with sound. 3-D polygonal rendering is the big
kick these days (take a look at Nintendo 64). Are these true enhancements, or
just eye candy? I tend to take the stance of the latter. Move, shoot and move,
shoot and repeat until your thumbs get sore. What game am I talking about?

It would be foolish of me to point to two of the oldest breakthroughs in game
design and say that the gaming industry has stagnated—that is not what I'm
trying to say. Now-classics such as Civilization, SimCity, PacMan, Tetris, The
Legend of Zelda and Super Mario Brothers sparked their legions of clones but
were all individual and profound. But which of these series haven't suffered in
some way from graphics mania? (I'd like to make an exception to this point.
Mario 64 was actually, in my opinion, a breakthrough in gaming and not just a
knock-off of a superior product.)

What games trace the lineage back to Adventure? What games descended from
its pinnacle in the non-combat adventure genre?



Following Adventure first and foremost was Zork. There were probably others
before Zork, but Zork made a noticeable impact on our consciousness. The
original Zork didn't stray far from the original concept; it had a newer and
fancier parser than the old caving adventure, resulting in more fluid game play.
Later installments by the Infocom crowd took gaming to new heights. Their
games had magic, mystery and fun. They pioneered the interactive story and
took it much farther than even Adventure. This is not to say that each of their
games were classic; many were derivative, but many more were unique.

Eventually, however, Infocom's luster began to wear off. Games increasingly
turned to graphical albeit inferior forms of gaming. Sierra On-line took a
prominent role with King's Quest and other games. Their storytelling was
fantastic, but something was just not right about using the arrow keys to walk
up to a tree and typing “look into tree” when you got there. Gradually, they
refined that interface further with icons and mouse movement, but the
“universal range of motion” feel that you got with the old text adventures was
gone. Now your actions were defined by what you could click on, not by what
you could imagine. Particularly frustrating for me were the layers of eye candy
they added to their games. It looked nice, but was often distracting, especially
when you wanted to manipulate and just couldn't figure out how.

Eventually, “point and click” adventure gaming became even more “clicky” with
the advent of games without funny icons. In these games, you just click on the
screen and the computer figures out what action you want from context. To
make matters worse, it wasn't long before gamers discovered a profound
secret: when one is stuck, one needs only to click madly around the screen until
stumbling on the magic hot-spot that jumps to the next level. Certainly, this is a
far cry from the seemingly infinite worlds offered by the early text-adventure
games, but is it progress?

Infocom (now owned by Activision) and others would try to break away from
this mold with later games, such as Return to Zork, which offered a much more
detailed mouse interface. Sadly, however, this is where I became disinterested
with the genre of non-combat “adventure” gaming, and I have yet to see
whether their more recent titles have matched that level in playability. (I'd love
to see a review of Zork: Grand Inquisitor—too bad they don't make it for Linux.)

What made these games so wonderful? It wasn't the graphics, obviously. What
made these games special was something more subtle. In addition to generally
good writing, the textual format allowed game designers to plug the computer's
output directly into the gamer's imagination. Who among us doesn't have
splendid memories of “Flood Control Dam III” (Zork), the little white house with
the boarded front door (Zork), or the “Hall of the Mountain King” (Adventure)?



Graphical games just don't plug into the subconscious in the same way. For me,
that made all the difference.

The Game

In the game of Adventure, you are an unnamed hero-explorer with a good head
on your shoulders and a sturdy back. Your mission is to locate and explore
Colossal Cave and bring back the hoards of treasure rumored to be inside. But
watch out; magic is afoot in the cave and all may not be as it seems. Scoring is
based on how many treasures you find, how much of the cave (if any) you
explore, and how many of those treasures you get out of the cave.

The game play is fairly simple. You instruct the game in two-word English
phrases (“get lamp”) to do things, and your character does them. The
vocabulary of the game is not quite as large as its Infocom descendants, but
that is understandable. When you get stuck, you can ask for help (although it
may not be forthcoming) and when you die, you can get put back together
again. It is all very simple.

On first starting the game, it will probably seem confusing. You've just been
plopped down in the middle of a large world with little idea of where to go. A
building is nearby—that's obvious. Consider it your base of operations, as you'll
need to deliver your hoards of treasure there in order to score the most points.
Farther afield is the hidden entrance to the cave, a confusing forest (the game's
first mini-maze), and many other sights once you get underground. That is, if
you remembered to bring your lamp. Otherwise, it'll be a short trip.

If you're playing this game for the first time, I recommend just exploring for a
while and seeing the sights. Once you are comfortable with the interface, you'll
probably want to get pen and paper and start drawing maps like a true
spelunker. Without some sort of map, you will most likely become lost in the
maze-like passageways, halls and crawls of Colossal Cave. If you do get stuck,
don't ask me for help. I'm at Witt's End.

Joseph Pranevich (jpranevich@lycos.com) is an avid Linux geek and, while not
working for Lycos, enjoys writing (all kinds) and working with a number of open-
source projects.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Remotely Monitoring a Satellite Instrument

Guy Beaver

Issue #65, September 1999

How a small aerospace company uses Linux to remotely monitor the
performance of a satellite instrument. 

G & A Technical Software (GATS) is a small aerospace company located in
Newport News, Virginia. Our primary area of business is the analytical support
of satellite-based atmospheric remote-sensing projects. We started using Linux
in 1995 for software development and data processing workstations. 

NASA is funding a two-year satellite mission called TIMED (Thermosphere
Ionosphere Mesosphere Energetics and Dynamics) to study the atmosphere.
One of the experiments on the spacecraft is called SABER, which stands for
Sounding of the Atmosphere using Broadband Emission Radiometry. SABER's
mission is to make measurements of temperature, ozone, carbon dioxide,
water vapor and other trace gases to learn more about the complex relation of
energy transfer between the upper and lower atmosphere. GATS has been
contracted by NASA to develop and operate the systems and software that
process the data from the spacecraft.

A big part of the SABER experiment is calibrating and testing the instrument
while it is on the ground. This task involves making measurements of known
sources and analyzing the results so that data taken from orbit can be
understood. Calibration of SABER is a difficult task, because measurements
need to be made at conditions found in space. To accommodate this, SABER is
calibrated in a large chamber that is capable of cold temperatures and near
vacuum pressures. SABER and its calibration facility were built by the Space
Dynamics Laboratory (SDL) in Logan, Utah. Figure 1 is a photograph of the
actual calibration test happening in the testing facility at SDL.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Figure 1. The high bay at SDL. The SABER test chamber is under a clean tent on the left. To the
center and right are engineers operating the instrument during calibration tests. The
computers mentioned in this article are along the right wall. 

In this article, I will describe a Linux-based system that allows remote
monitoring of the SABER calibration tests. I will discuss the porting of software
from a Windows NT workstation to a Linux workstation due to reliability
requirements, as well as the use of several open-source products such as the
GNU C++ compiler, CVS for configuration management, Xmgr for diagnostic
plots, PostgreSQL database, VNC for remote terminal access and Perl. Many of
the systems proven by this project can be used by other small businesses for
powerful cross-country data processing while keeping total costs and
development time low. The system is robust and provides real-time monitoring
and analysis of the SABER instrument (located in Logan, Utah) from Newport
News, Virginia. The same system will be used for post-launch data processing.

Requirements

Big projects go through several iterations of requirements/design/review, and
SABER was no exception. When the time came to put together a final design,
the requirements for the system were well-documented. Basically, the system
needed to talk via a socket to a computer (a Sun workstation dubbed GSE for
ground system equipment). The GSE computer provided raw data from the
SABER instrument as well as all the test equipment connected to it. We needed
to unpack the data into large staging files which could be read by analysis
programs. On top of this, the system needed to access a PostgreSQL database
on the GSE that was being populated by the SDL test operators with
information on the various tests being run, such as times and readings from
the various sensors. We had to provide software flexible enough to quickly
analyze data with unknown quirks. This means easy debugging and code-level



diagnostic plotting capability. The system had to work 24 hours per day and
provide remote access from Virginia to Utah so that our engineers could have
timely access to the data for supporting the actual tests. Finally, the system we
developed had to be easily reconfigurable for post-launch data processing.

Design

We began the design by using software that GATS developed for another
project. These C routines provide an interface to raw spacecraft data in the
standard spacecraft format developed by the Consultative Committee for
Space Data Systems (CCSDS). SDL simplified the job for us by making the raw
CCSDS data available over a TCP socket, which our system already supported.
We call this stage of the processing Level 0. It takes the raw binary data in
packet form and unpacks it into ASCII files, sorted by data type. We chose ASCII
for the initial design because disk space was not an issue (9GB total), and
troubleshooting is much simpler if files are human-readable. ASCII is also a
friendly format for passing between different systems. We wanted this stage of
processing to write across the network as well, so NFS was a must. Note that
utilizing socket calls and NFS at this stage means the physical location of the
Level 0 computer is irrelevant, as long as the Internet is available.

The next stage of the processing is called Level 1, and its first job is to query the
PostgreSQL database for test information. With this, the relevant data is
extracted from the Level 0 files and broken out into a single file for each test.
For this part of the design, Linux was a must. The Level 1 processing had to talk
to an NT box and a Sun workstation. We chose Linux because Samba is easy to
set up for NT file sharing, and data sharing with the Sun is automatic via NFS.
The software design called for object-oriented programming (OOP) using C++,
so that classes writing the Level 1 files could be reused downstream to read the
data. Linux comes with GNU C++, which is extremely reliable and easy to
debug. Another reason for choosing Linux was that the analysis tools for this
project were developed in C++ on a Linux workstation using the powerful (and
freely available) display package called Xmgr.

This design is easily modified for post-launch processing, since the data coming
from the calibration setup is in precisely the same format as that coming from
the spacecraft.

Implementation

Our original design was based on two computers. One was an NT workstation
running the Level 0 software and simultaneously providing some real-time strip
charts of data. The second was a Linux workstation running the Level 1
software. It was a P-II with 128MB RAM and 24GB hard drive to catch six week's
worth of calibration data. We built the Linux workstation for about $3500. We



ran Samba on the Linux workstation so that the NT box could write its Level 0
files to the large hard drive on the Linux box across the network.

We flew out to Utah with the computers to test the original design. It worked,
but we had some reliability issues with the NT-based Level 0 software. One
requirement was that the Level 0 files must be generated reliably and be read-
accessible 24 hours per day. We had some unexplained hiccups when the files
were accessed by programs such as Microsoft Notepad. After verifying that file
read/write access was set correctly, we decided to change the design and port
the code to the Linux box.

As mentioned above, the Level 0 software was reconfigured from another GATS
project that required an NT workstation. After reviewing the code, we realized
the only Windows unique code was in the winsock calls for socket connections.
It is easy to port Windows <winsock.h> calls to GNU C <socket.h> calls. In fact, it
entails deleting some overhead needed in Windows but not required in GNU C.
To make the code backward-compatible, we simply wrapped the Linux code
with #ifdef LINUX-#else pre-compiler directives. This allowed us to keep the
same version of code that worked on NT and Linux under one configuration
management version. Some examples of converting Windows socket calls to
Linux are shown in Listing 1.

Listing 1.

With these modifications, we now had the Level 0 and Level 1 processing stages
on one Linux workstation. We called this the Calibration Analysis Computer,
and we left it and the (now spare) NT workstation at SDL connected to their
network. During calibration tests, it generated Level 0 files 24 hours per day
and never had to be rebooted over the six-week calibration period. As I
mentioned before, the NT workstation had some strip-charting capabilities for
viewing real-time data. This turned out to be a good use for the NT box, so we
configured it to work with SABER data. Since the Linux workstation was on the
Internet, we automatically had remote access, and we needed the same for the
NT box. VNC filled the bill. This remarkable application (Virtual Network
Computer) pipes the Windows desktop to a client running on a Linux X session.
With VNC, we had the ability to set up and monitor the NT box remotely so we
could configure it for SDL engineers wishing to view real-time temperature
output. We could also view the same real-time strip-charts on our Linux
workstations back in Virginia.

This system offers a great deal of flexibility. We chose to let the Linux
workstation at SDL connect to the socket, then access the data through the
Internet. We could also connect to the socket from Virginia and generate the
Level 0 files in our office.

https://secure2.linuxjournal.com/ljarchive/LJ/065/3435l1.html


The Level 1 processing stage ran flawlessly. The PostgreSQL database on the
GSE workstation was easily accessible from the front-end library (libpq-fe.h)
that comes with this powerful SQL database. Each calibration test event was
performed automatically by a script on the GSE workstation which
automatically populated an “event” in the database. The Level 1 stage made a
query to this database for beginning and ending times of the test event. With
this information, the particular piece of the Level 0 files could be pulled out and
processed (even though they were constantly being written to). These files,
called calibration analysis files, could then be accessed by the analysis routines,
which we called Level 1b.

The Level 1b processing stage contained powerful tools for analyzing the
calibration data. Many of the algorithms were from other GATS projects and
were reconfigured to be methods within classes developed for the SABER
project. One valuable diagnostic tool proved to be the C-callable library that
came with the Xmgr graphics analysis package. These library calls were
wrapped in an easily utilized plotting method contained in our Level 1b class.
Using objects that have diagnostic plot methods shortened the debugging
period that comes with looking at real data for the first time.

Our development team was lean and mean—three people working on various
modules with support from two others, all working under the CVS configuration
management system. Since our computers moved back and forth across the
country, they were set up to be easily configured for their current location. We
did this with simple scripts, stored in /root, which are run after bootup. We had
a script for each location—“atGats” and “atSDL”. These simple scripts set the
local IP address and set an /etc/resolv.conf (containing the location of local
name servers and IP addresses) for each location. The scripts simply made a
dynamic link to the appropriate resolv.conf file. An alternate solution would
have been dynamically assigned IP addresses through DHCP, but we already
had pre-assigned local addresses from SDL, and this method was simple and
gave us easy control based on the computer's location.

Listing 2.

I attended the first two weeks of calibration testing in Utah to ensure
everything was working well, while my support people stayed home in Virginia.
During that time, we easily diagnosed problems and were able to make
updates to the code using CVS (Concurrent Version System, the GNU
configuration management package). I described problems, they were fixed in
Virginia, and I got instant updates with the CVS update command. This works
because CVS can be set up with an NFS-mounted CVS root directory on a
remote machine (in this case, at GATS in Virginia).

https://secure2.linuxjournal.com/ljarchive/LJ/065/3435l2.html


Once the testing started and Level 0 files were being generated, we monitored
the data from Virginia as the tests were being run. Quick queries of the
database with SQL told us when tests were completed. Making the Level 1 files
was easy to automate at this point. Since the Level 1 software had command-
line arguments typical of UNIX applications, we wrote Perl scripts to loop over
the test event IDs (which were database fields designating each test event), and
generated the Level 1 files in batches. As we migrate the software to the post-
launch processing system, we will automate the entire daily processing with
similar Perl scripts.

Results/Benefits

This system provides us with the ability to remotely monitor the SABER
calibration tests and the flexibility to remotely process the data, or even
download and process it in Virginia on our local Linux workstations. We've used
Linux for five years, so we were not surprised at the ease of getting Linux to
work in a networked environment. From this exercise, we verified the validity
and robustness of Linux as the OS of choice for systems requiring remote
access and remote monitoring. Invaluable to our project has been the flexibility
Linux offers for configuring a mobile computer to operate in different locations
under different networks. Finally, the ease of troubleshooting provided by the
open-source software available in the standard Linux packages makes it the
clear winner in rapid-development environments.

Resources

Acknowledgments

Guy Beaver is a Software Engineer and Senior Associate at GATS Incorporated.
He has worked with computers and satellite remote sensing since 1984.
Although he looks young, he is old enough to remember card punches and 8-
track tapes. He can be reached at beaver@gats-inc.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/065/3435s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/3435s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

First UNIX/Linux National Competition Held in Ljubljana,

Slovenia

Primoz Peterlin

Ales Kosir

Issue #65, September 1999

A look at the questions and answers for a contest to find Linux solutions to
common problems. 

On April 24, 1999, the Slovenian National Linux User Group organized the first
national competition in UNIX/Linux. The competition was among the activities
connected with the 23rd Annual National Competition in Computer Science for
high school students and the Fifth Festival of Computing, both of which were
held in late April at the Department of Computer Science at the University of
Ljubljana. As opposed to the already long-established tradition of national
competitions in computer science, where a great emphasis is given to problems
easily solved with procedural programming languages, this competition seeks
its niche in favoring solutions implemented with “alternative” tools from the
UNIX programming environment, where the strengths of these tools can be
shown in the best way. 

When preparing the exercises for this competition, those of us who served as
the organizing committee searched the Web extensively for similar
competitions elsewhere. Unfortunately, we found none. We would therefore
like to make our own experiences available to the broader audience and
hopefully initiate some collaboration in this area. In this article, we present the
exercises that were part of the competition together with their solutions,
explained in detail and commented. We conclude with the results of the
competition accompanied by a few remarks and afterthoughts.

Exercises

2:1. Frequency Analysis of Text

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Perform a simple frequency analysis of text. Read a text file and write to the
standard output the complete list of all words in the text along with their
frequencies. The list should be sorted in ascending order, with the least
frequent words on the top and the most frequent ones on the bottom. A
“frequency” is a number which tells us how many times a certain word occurs in
the given text. You can assume the text file contains no other characters but
letters and blanks.

2:2. vi Editor

On a multi-user system, you want to prevent multiple users from editing the
same file simultaneously using the vi editor. Suggest a solution! Implement
your solution as a script. Comment the good and the bad aspects of your
solution. You can assume that every user calls the editor using the command vi 
filename. You cannot rely on the vi editor issuing a warning when editing an
already-opened file.

2:3. Shuffle

The lines in a given file are sorted by certain criterion. You don't want this, and
would like to shuffle the lines pseudo-randomly. Propose your shuffling
algorithm and implement it in the code. Pay attention to the efficiency of your
code. “Pseudo-randomly” means you are allowed to use the random number
generator available in the tool you will choose.

2:4. IP Addresses

A text file contains multiple references to IP addresses. You want to replace
them all with the fully qualified domain names (FQDN). The IP addresses and
the corresponding FQDNs are listed in the /etc/hosts file:

193.2.1.72      nanos.arnes.si

You can assume this file contains nothing but records like the one shown. 

Numerical IP value is of the form 0.0.0.0-255.255.255.255. Without sacrificing
much generality, you can assume every pattern 0.0.0.0-999.999.999.999 in the
given text file is a valid IP address and its corresponding FQDN can be found in
the /etc/hosts file. You can also assume each IP address in the text file is
delimited by at least one blank character on both sides.

General Rules

You are allowed to use the script languages of any command shell (e.g., sh, csh, 
ksh, bash) or any script language such as sed, awk and perl. You are also



allowed to use all the user commands provided by a UNIX system as specified
by POSIX. You are not allowed to use compiled languages such as C, C++, Pascal
or FORTRAN. If you are in doubt as to whether the tool you plan to use is
allowed, you can ask a member of the supervising committee. The decision of
the supervising committee is final.

Solutions

2:1. Frequency Analysis of Text

It is easy to solve this exercise with the sort and uniq commands and some
command pipelines. The solution can be written in a single line:

tr " " "\n" < filename | sort | uniq -c | sort -n

With tr we replace each blank in the text file with a newline, thus chopping it
into a form where a single word is written per line. Since tr expects the data
stream from the standard input, we have to redirect the data from the file to
the standard input with the < sign. The author of the exercise has made life a
bit easier for us, since we don't have to worry about the periods, commas and
other non-letters in the text. The output from tr is pipelined (the | sign) to the
input of the sort command, which outputs an alphabetically sorted list of all
words in the text file. We pipeline it again to the input of the uniq command.
With no options, the uniq command eliminates multiple occurrences of
adjacent lines in a text. With the option -c (count), it also reports the number of
occurrences for each line read on the input. Since we have already chopped the
text beforehand, uniq thus outputs the list of frequencies. The only remaining
task is sorting it by frequency rather than alphabetical order, which we do with
the second sort command. The -n option is used to perform the sort by the
numerical value of the first field. 

Was the explanation too quick? If you are not familiar with pipelines, we advise
you to try and assemble the complete operation one step at a time. To start,
use the tr command alone:

tr " " "\n" < filename

Now try to pipeline its output into sort, and watch what happens! Continue with
the rest of the pipelined commands. 

Let us conclude this discussion with an illustration showing frequency analysis
on an actual text. The ten most common words in Martin Krpan, a text by Fran
Levstik, are:

61 v
65 Krpan
74 bi



74 na
107 da
121 in
127 ne
142 se
161 pa
207 je

2:2. vi Editor 

This exercise requires familiarity with the concept of file locking. The given
program (in our case, the vi editor) is renamed or moved to a directory not
included in the users' PATH environment variable. In its place, we put an
enveloping script named vi which, when called, creates a lock file, starts the
editor and removes the lock file on exit. The lock file is created in the same
directory as the file we are editing, and not in the /tmp directory, for instance.
This is necessary to avoid any confusion which could arise when two files with
the same name exist in two different directories.

A possible problem may occur if two users simultaneously start editing a
certain file. User A starts the script, which discovers a lock file does not exist
and proceeds to create one. Before it actually creates it—remember, UNIX is a
multitasking system—the process is interrupted by user B starting the same
script. Since the lock file still doesn't exist, the script also decides that user B is
allowed to set the lock.

The problem can be avoided if the procedure is reversed: first we create the
lock file, and afterwards we check if we were successful. Does that sound
strange? The solution presented here does exactly that. Using the touch

command, the script always tries to create a lock file, then reacts depending on
the exit status reported by touch. On a successful exit, touch exits with a zero
(true) exit code, while on an unsuccessful exit, it reports a non-zero (false) exit
code. There are other possible situations in which touch exits with a non-zero
exit code, but here we are focusing on only one. If we try to touch a file
belonging to another user for which we don't have write permission, touch
reports an error and exits with a non-zero exit code. Therefore, we have to
make sure that when the lock file is created, no other user has write
permission. This is accomplished using the umask command as shown below:
user (u) is the only one who is granted both read and write (rw) permissions,
while users from the same group (g) and all the other (o) users are granted
none. Since we don't want the umask command to affect our environment, we
have limited its influence by enclosing it in parentheses. The gibberish following
the touch command is used to send the error messages produced by touch
into oblivion. We are interested only in the exit code and are happy with touch
running absolutely quietly.

#!/bin/ksh
if ( umask u=rw,g=,o=; touch $1.lock >\
/dev/null 2>&1 )



then
  vi $1
  rm -f $1.lock
else
  echo "$1 is currently locked."
fi

Since it depends on the touch exit code, the solution presented here doesn't
prevent a user from opening his own file more than once. This is not explicitly
required in the exercise, so it is not considered a deficiency in this context.
There is also nothing preventing root from opening anybody's files. Moreover,
the solution employing an enveloping script does not prevent any user from
reading an already-opened file from within the vi editor. Unlike the traditional
AT&T vi, many of its newer incarnations have the file-locking facility built in. vim

(Vi IMproved), the most common vi replacement on Linux, is one of them. 

2:3. Shuffle

Shuffling is obviously a procedure that can easily be accomplished by brute
force. First, each line is prepended by a random number, then the lines in the
file are sorted according to these random numbers, and finally all the
prepended numbers are cut away, retaining only the original lines in their
altered order. Again, the solution can be written in a single line:

awk '{ print rand(), $0 }' sorted.lst | sort -n
|
cut -d " " -f 2-

The first command performs the following statement in the awk scripting
language on the file sorted.lst: 

{ print rand(), $0 }

For those not familiar with awk, commands in this scripting language have the
form 

condition { statement }

For each record on input (if not specified otherwise, a record defaults to a line,
as in the present case), the condition is checked, and if met, the corresponding
statement is executed. 

In our case, no condition was specified, which means the statement is executed
for each line on input. The statement itself says to print a random number
followed by the line read on the input. The output from awk is then piped to
the input of sort, which sorts the lines by the numerical value of their first field.
The first field is the random number which was prepended in the previous step.

Finally, we remove the prepended random numbers with cut. The two options
given to cut mean, treat blank as field delimiter (-d " ") and extract the fields



from the second field onward (-f 2-). We have thus dropped the first field, which
was the prepended random number.

Sorting makes the above algorithm an N log N one. A more efficient shuffling
was invented by Durstenfeld (Comm. ACM 7, 1964, 420), having a linear
dependency. Here we present an implementation in Perl for our purpose:

#!/usr/bin/perl
@line =<>; # the complete input file
                    #is read into a vector
for ($i = 0; $i <= $#line; $i++) { # for i-th line
    $rnd = $i + int(rand($#line - $i + 1));
                    # we select a random line
                    # between i and the end
    print $line [$rnd]; # print it
    $line [$rnd] = $line[$i]; # replace with i-th
}

2:4. IP addresses 

This exercise requires recognizing the following pattern in the text: a blank,
followed by one, two or at most three digits, a dot, again one, two or three
digits, another dot, again one, two or three digits, yet another dot, once more
one, two or three digits, and the final blank. This pattern can be efficiently
described as a regular expression in Perl:

\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b

Here \b denotes a word boundary, \. is an explicit dot (otherwise a dot means
“any character” in the regular expression syntax) and \d{1,3} means a sequence
from one to three digits. 

The solution consists of two separate tasks. First, we have to read the /etc/

hosts file and construct a mapping table. Second, we scan the text file for IP
addresses and replace them with the corresponding FQDN from the mapping
table. Again we present a solution in Perl:

#!/usr/bin/perl
open (HOSTS_FILE, "/etc/hosts");
while ($line = <HOSTS_FILE>) {
    chomp $line;
    ($ip, $fqdn) = split(/ +/, $line);
    $hostbyip {$ip} = $fqdn;
}
close(HOSTS_FILE);
while (<>) {
  s/\b(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})
  \b/$hostbyip{$1}/g;
  print;
}

When constructing the mapping table $hostbyip, we used a nice feature of Perl
called associative arrays or hashes, which allows us to refer to an element in
the table by a symbolic name. Here, we used the IP address written as a string



(variable $ip). The address replacement in the second task is implemented
using the s (substitution) operator: s/pattern/replacement/g. The final g (global)
modifier makes the substitution operator more eager; the first pattern found in
the line doesn't satisfy it, but it continues to scan the rest of the line for another
occurrence(s) of the given pattern. 

In reality, the Domain Name System has replaced the /etc/hosts files long ago.
For a more realistic example, we would have to replace the reading of /etc/
hosts table by a gethostbyaddr call. The modified program is actually even
shorter:

#!/usr/bin/perl -p
BEGIN {
    sub gethostbyip {
    my ( $ip ) =  @_ ;
    $packaddr = pack ("C4", split (/\./, $ip) );
    ($name) = gethostbyaddr( $packaddr, 2 );
    return $name;
    }
}
s/\b(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})
\b/gethostbyip($1)/eg;

Results

Thirteen competitors entered this year. They had 90 minutes to solve all
exercises using pencil and paper. They were allowed to use all available
literature, but did not have access to a computer to test their solutions.
Therefore, the committee decided to judge favorably all solutions exhibiting the
correct ideas, even if they were not written syntactically error-free. After
reviewing all submitted solutions, the committee decided to award prizes to the
following three contestants:

• Andraz Tori
• Mitja Bezget
• Gasper Fele-Zorz

The average quality of the submitted solutions suggests that despite all the
publicity Linux received during the last year, high school students are not
particularly familiar with the tools from the UNIX/Linux programming
environment. This is a pity, since we believe that the many strong scripting
languages and modular tools are one of Linux's advantages over its
competitors. 

The analysis of the anonymous questionnaire which the competitors were
asked to fill in also yielded some interesting results. The competitors were
asked questions about their own computing environment, to classify the
exercises on a scale of 1 to 5 from “easy” to “difficult” and to give suggestions.
Some found the limit to scripting languages too restrictive. An interesting



response came from a competitor who considered the exercises would be
simple “provided that C or C++ could be used”.

This calls for a comment. Every exercise is easiest to solve in a language one is
familiar with. Anybody familiar with both C and some scripting language would
probably agree that these exercises can be solved in the latter with much less
effort. This was intentional. What wasn't intentional is that we discovered the
fact that high school students hardly touch on any scripting language at all and
are thus unaware of their benefits. Rapid prototyping, for example, is quickly
and easily accomplished from readily available tools. This is a complement
rather than a replacement for the compiled languages. If speed is truly
important, a successful prototype is normally followed by a compiled version,
usually distinguished by much faster execution. In practice, both approaches
coexist, while in our schools, one seems to have a complete dominance.

Last but not least, the title of this competition also probably deserves a
comment. UNIX, or Linux in its narrower sense, denotes the operating system
kernel. Kernel-level exercises were not part of this competition and, given the
limited time and resources available to competitors, would not be feasible at
this moment. It would be honest to admit that in the trade-off between short
and catchy names and long and precise ones, we have leaned towards the
former. Who knows—perhaps the extra room we have created for ourselves
will even prove useful at some later time.

Primoz Peterlin holds a M.Sc. in Physics and works for the Institute of
Biophysics, University of Ljubljana, Slovenia. Getting his first computer in 1983,
he discovered Linux in 1992 and has never left it since. His diverse interests
include biocomputing, typography and mountain hiking. He can be reached at 
primoz.peterlin@biofiz.mf.uni-lj.si. 

Ales Kosir has a BS in Mathematical Physics and an MS in Mechanical
Engineering. In the company Hermes SoftLab, he works on compiler-based
technology, while he is interested in many aspects of localization. He enjoys
cooking, particularly seafood, and for his own pleasure he plays the piano.
More about him can be found on nl.ijs.si/GNUsl/. 

mailto:primoz.peterlin@biofiz.mf.uni-lj.si
http://nl.ijs.si/GNUsl/


Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Filters

Paul Dunne

Issue #65, September 1999

This article is about filtering, a very powerful facility available to every Linux
user, but one which migrants from other operating systems may find new and
unusual. 

At its most basic level, a filter is a program that accepts input, transforms it and
outputs the transformed data. The idea of the filter is closely associated with
several ideas that are part of the UNIX operating system: standard input and
output, input/output redirection and pipes. 

Standard input and output refer to default locations from which a program will
take input and to which it will write output. The standard input (STDIN) for a
program running interactively at the command line is the keyboard; the
standard output (STDOUT) is the terminal screen.

With input/output redirection, a program can take input or send output using a
location other than standard input or output—a file, for example. Redirection
of STDIN is accomplished using the < symbol, redirection of STDOUT by >. For
example,

ls > list

redirects the output of the ls command, which would normally go to the screen,
into a file called list. Similarly, 

cat < list

redirects the input for cat, which in the absence of a file name would be
expected from the keyboard, to come from the file list--so we output the
contents of that file to the screen. 

Pipes are a means of connecting programs together through I/O redirection.
The symbol for pipe is |. For example,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


ls | less

is a common way of comfortably viewing the output from a directory listing
where there are more files than will fit on the screen. 

Simple programs provided as standard with your Linux system can be
enhanced by using them as filters for other similar programs. I'll also show how
simple programs of your own can be built to meet custom filtering needs.

One program I don't look at in this article is Perl. Perl is a programming
language in its own right, and filters are language-independent.

grep

The program grep, “Get Regular Expression and Print”, is a good place to begin.
(See “Take Command: grep” by Jan Rooijackers, March 1999.) The principle of
grep is quite simple: search the input for a pattern, then output the pattern. For
example,

grep 'Linus Torvalds' *

searches all files in the current directory for Linus' name. 

Various command-line switches may be used to modify grep's behaviour. For
example, if we aren't sure about case, we can write

grep -y 'linus torvalds' *

The -y switch tells grep to match without considering case. If you use any
upper-case letters in the pattern, however, they will still match only upper-case.
(This is broken in GNU grep, which simply ignores case when given the -y switch
—that's what the -i switch does). 

With just this bit of information about grep, it is easy to construct a practical
application. For example, you could store name and address details in a file to
create a searchable address book.

Extended Grep

Sometimes, basic grep won't do. For instance, suppose we want to find all
occurrences of a text string which could possibly be a reference to Linus.
Clearly, searching for 'Linus Torvalds' is not enough—that won't find just Linus
or Torvalds. We need some way of saying, “This or this or this”. Here is where 
egrep (extended grep) comes in. This handy program modifies standard grep to
provide just such a conditional syntax by using the | character to denote “or”.



egrep 'Linus Torvalds|L\. Torvalds|Mr\. Torvalds' *

will now find most ways of naming the inventor of Linux. Note the backslash to
“escape” the period. Since it is a special character in regular expressions, we
must tell egrep not to interpret it as a “magic” character. 

A Note on Regular Expressions

tr

tr is perhaps the epitome of filters. (See “Take Command: A Little Devil Called tr”
by Hans de Vreught, September, 1998.) Short for translate, tr basically does
what its full name suggests: it changes a given character or set of characters to
another character or set of characters. This is done by mapping input
characters to output characters. An example will make this clear:

tr A-Z a-z

changes upper-case letters to lower-case. A-Z is shorthand for “all the letters
from A to Z”. 

sort

Sorting is a very basic computer operation. It is commonly used on text, to get
lists in alphabetical order or to sort a numbered list. Linux has a powerful filter
for sorting called, logically enough, sort.

head and tail

These two very simple filters have a surprising variety of uses. As their names
suggest, head shows the head of a file, while tail shows the end. By default,
both show the first or last ten lines respectively, and tail in particular has a
number of other useful options. (See the man pages.)

Programmable Filters

Sometimes we need to do something a bit more complex than the relatively
simple command lines of the above examples. For this, we need something I'll
call a “programmable filter”, that is, a filter with a scripting language that allows
us to specify complex operations.

sed

sed, the stream editor, is a filter typically used to operate on lines of text as an
alternative to using an interactive editor. (See “Take Command: Good Ol' sed”
by Hans de Vreught, April 1999.) There are times when firing up vi or Emacs and
making the change, whether manually or using vi/ex commands, is not

https://secure2.linuxjournal.com/ljarchive/LJ/065/2479s1.html


appropriate. For example, what if you have to make the same changes to fifty
files? What if you need to change a string, but are not sure exactly in which files
it occurs?

As is common in the UNIX world, where tools are often duplicated in different
ways, sed can do most things grep does. Here is a simple grep in sed:

sed -n '/Linus Torvalds/p' filename

All this does is read standard input and print only those lines containing the
string “Linus Torvalds”. 

The default with sed is to pass standard input to standard output unchanged.
To make it do anything useful, you must give it instructions. In our first
example, we searched for the string by enclosing it in forward slashes (//) and
told sed to print any line with that string in it with the p option. The -n option
ensured that no other lines would be printed. Remember, the default
behaviour is to print everything.

If this were all sed could do, we would be better off sticking with grep. However,
sed's forte is as a stream editor, changing text files according to the rules you
supply. Let's take a simple example.

sed 's/Torvuls/Torvalds/g' filename

This uses the sed “substitute” (s option) and applies it globally (g option). It
looks for every occurrence of “Torvuls” and changes it to “Torvalds”. Without the
g command at the end, it would change only the first occurrence of “Torvuls” on
each line. 

sed '/^From /,/^$/d' filename

This searches the standard input for the word “From” at the beginning of a line,
followed by a space, and deletes all the lines from the line containing that
pattern up to and including the first blank line, which is represented by ^$, i.e.,
a beginning of line (^) followed immediately by an end of line ($). In plain
English, it strips out the header from a Usenet posting you have saved in a file. 

Double-spacing a text file takes just one command:

sed G filename > file.doublespaced

According to our manual page, all this does is “append the contents of the hold
space to the current text buffer”. That is, for each line, we output the contents
of a buffer sed uses to store text. Since we haven't put anything in there, it is
empty. However, in sed, appending this buffer adds a new line, regardless of



whether there is anything in the buffer. So, the effect is to add an extra new line
to each line, thus double-spacing the output. 

AWK

Another very useful filter is the AWK programming language. (See “The AWK
Tools” by Lou Iacona, May 1999.) Despite the weird name, it is an everyday tool.

To start with, let's look again at yet another way to do a grep: 'grep'. Fast

awk '/Linus Torvalds/'

Like grep and sed, AWK can search for text patterns. As with sed, each pattern
can be associated with an action. If no action is supplied as in the above
example, the default is to print each line where the pattern is matched.
Alternatively, if no pattern is supplied, then the default action is to apply the
action to every line. An AWK script for centering lines in a file is shown in Listing
1. 

Listing 1.

AWK's strength is in its ability to treat data as tabular, that is, arranged in rows
and columns. Each input line is automatically split into fields. The default field
separator is “white space”, i.e., blanks and tabs, but can be changed to any
character you want. Many UNIX utilities produce this sort of tabular output. In
our next section, we'll see how this tabular format can be sent as input to AWK
using a shell construction we haven't seen yet.

Pipes: When One Filter Isn't Enough

The basic principle of the pipe (|) is that it allows us to connect the standard
output of one program with the standard input of another. (See “Introduction
to Named Pipes” by Andy Vaught, September 1997.) A moment's thought
should make the usefulness of this when combined with filters quite obvious.
We can build complex instructions 'programs', on the command line or in a
shell script, simply by stringing filters together.

The filter wc (word count) puts its output in four columns by default. Instead of
specifying the -c switch to count only characters, give this command:

wc lj.filters | awk ' { print $3 } '

This takes the output of wc: 

258    1558    8921 lj.filters

https://secure2.linuxjournal.com/ljarchive/LJ/065/2479l1.html


and filters it to print only the third column, the character count, to the screen: 
8921

If you want to print the whole input line, use $0 instead of $3. 

Another handy filtering pipe is one that does a simple filtering of ls -a output in
order to see only the hidden files:

ls -a| grep ^[.].*

Of course, pipes greatly increase the power of programmable filters such as
sed and awk. 

Data stored in simple ASCII tables can be manipulated by AWK. As a simple
example, consider the weights and measures converter shown in Listing 2. We
have a simple text file of conversions:

From    To      Rate---     ---     ----
kg      lb      2.20
lb      kg      0.4536
st      lb      14
lb      st      0.07
kg      st      0.15
st      kg      6.35
in      cm      2.54
cm      in      0.394

To execute the script, give the command: 

weightconv 100 kg lb

The result returned is: 
220

Listing 2. 

Power Filters

The classic example of “filtered pipelines” is from the book The UNIX
Programming Environment:

cat $* |tr -sc A-Za-z '\012' |
sort |
uniq -c |
sort -n |
tail

First, we concatenate all the input into one file using cat. Next, we put each
word on a separate line using tr: the -s squeezes, the -c means to use the
complement of the pattern given, i.e., anything that's not A-Za-z. Together, they
strip out all characters that don't make up words and replace them with a new
line; this has the effect of putting each word on a separate line. Then we feed

https://secure2.linuxjournal.com/ljarchive/LJ/065/2479l2.html


the output of tr into uniq, which strips out duplicates and, with the -c argument,
prints a count of the number of times a duplicate word has been found. We
then sort numerically (-n), which gives us a list of words ordered by frequency.
Finally, we print only the last ten lines of the output. We now have a simple
word frequency counter. For any text input, it will output a list of the ten most
frequently used words. 

Conclusion

The combination of filters and pipes is very powerful, because it allows you to
break down tasks and then pick the best tool for each task. Many jobs that
would otherwise have to be handled in a programming language can be done
under Linux by stringing together a few simple filters on the command line.
Even when a programming language must be used for a particularly
complicated filter, you still save a lot of development effort by doing as much as
possible using existing tools.

I hope this article has given you some idea of this power. Working with your
Linux box should be both easier and more productive using filters and pipes.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue65/2479.tgz. 

Paul Dunne (paul@dunne.ie.eu.org) is an Irish writer and consultant who
specializes in Linux. The only deadline he has ever met was the one for his very
first article. His home page is at http://www.cix.co.uk/~dunnp/ 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/listings/065/2479.tgz
mailto:paul@dunne.ie.eu.org
http://www.cix.co.uk/~dunnp
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The Unified Modeling Language User Guide

Geoff Glasson

Issue #65, September 1999

This book is intended to be read by people involved in the production of object-
oriented software systems. 

• Authors: Grady Booch, James Rumbaugh and Ivar Jacobsen
• Publisher: Addison-Wesley Publishing Co.
• URL: www.awl.com
• Price: $47.95
• ISBN: 0-201-57168-4
• Reviewer: Geoff Glasson

The preface of The Unified Modeling Language User Guide states: 

The Unified Modeling Language (UML) is a graphical
language for visualizing, specifying, constructing and
documenting the artifacts of a software-intensive

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.awl.com


system. The UML gives you a standard way to write a
system's blueprints, covering conceptual things, such
as business processes and system functions, as well as
concrete things, such as classes written in a specific
programming language, database schemas, and
reusable software components.

This book is intended to be read by people involved in the production of object-
oriented software systems. It assumes the reader has a basic understanding of
object-oriented concepts, and from there teaches one how to use UML. In
realistic terms, the book contains too much information to review adequately
here, as I cannot do justice to the authors in such a short space. 

The book is divided into three major sections: structural modeling, behavioral
modeling and architectural modeling. The structural and behavioral modeling
are then subdivided into basic and advanced sections. Each section is laid out in
a manner such that you can read the entire section (as I did) or only those parts
that are important to you.

The basic structural modeling section describes the use of classes, relationships
and class diagrams. It provides the basics which all object-oriented software
engineers require to build UML models. Classes are described down to their
lowest level, and subsections show how to distribute the responsibilities of a
system among the classes that compose it. The advanced section expands on
this to describe how to model the semantics of a class, object diagrams,
packages, relationships and interfaces. This section shows how to model the
relationships between classes and how to model the interfaces provided by a
group of classes. It also teaches how to model a set of objects and their
relationships at a given point in time using object diagrams.

The basic behavioral modeling section describes how to model the interaction
between objects. It describes the interaction, use case and activity diagrams
which dictate how the objects in the model interact with each other. The
advanced behavioral modeling section also describes how to model events,
state machines, processes, threads and time constraints. This book contains a
wealth of information for the modeling of the structure and behavior of classes
and objects. The authors show how to use state diagrams to model the
behavior of individual objects within the system, showing how an object
responds to internal and external stimuli. The examples start at simple state
diagrams and continue through to complex diagrams that contain states and
substates (states within states).

The architectural modeling section describes how to use the UML to document
the physical arrangement of the software system. It deals with the complex
issue of managing the components of the final product as well as how those
components are deployed when the software is installed, using component and



deployment diagrams. A component diagram graphically depicts the
components that comprise the software; similarly, the deployment diagram
describes how the components are distributed across one or more systems
and how the hardware components are interconnected.

The authors have gone to great lengths to produce a readable book full of
examples and useful tidbits. Try not to be overwhelmed by the volume of
information in this book—much information is there, but it is all aimed at
helping you model systems more accurately, and thereby design and
implement better systems.

In my opinion, this book is a great addition to every object-oriented software
developer's library, because it contains a great deal of information about how
to model software systems. Although I have used both the Booch method and
UML for some time now, I learned many things that improved the quality of my
designs, especially in the area of communicating these designs to others. It is a
book worth buying.

Geoff Glasson (glastech@iinet.net.au) has been a professional software
developer for ten years, working mainly with C and C++ on Solaris systems. He
has used UML for 2.5 years. He is currently the leader of a small software
development team at Motherwell Information Systems working in the process
control field. When he is not working, he enjoys playing with his two kids,
spending time with his wife, playing indoor cricket and playing with Linux.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/065/toc065.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Focus
	Features
	Forum
	Columns
	Reviews
	Departments
	Strictly On-line
	Focus: Cooking with Linux
	Marjorie Richardson
	Other Things

	Cooking with Linux—The French Connection
	Marcel Gagné
	A Little Wine with Dinner?
	Talking to Windows
	Why Didn't Somebody Tell Me I Have Mail?
	Hey There, What's Your IP?
	Speaking of diald...
	Waiter! More disk!
	Where Does the Time Go and What Time Is It
Anyway?
	Sorry Folks, it's Closing Time

	Natural Selection in a Linux Universe
	Travis Metcalfe
	Ed Nather
	Evolving Darwin
	Cheap Hardware, Free Software
	How It Works
	Stumbling Blocks
	Conclusions

	Multilink PPP: One Big Virtual WAN Pipe
	George E. author)
	The ABCs of PPP
	The Need for MLPPP
	Spoofing
	WAN Magic
	Keeping Up with ATM
	PPP Plus
	WAN Independence

	Netscape Plug-Ins
	Larry Hoff
	Plug-ins vs. Helper applications
	Review of MIME
	When to Use Plug-ins
	Where to Get Plug-ins
	How to Install and Remove Plug-ins
	Creating Plug-ins
	The API
	Design Issues
	Conclusion

	Open Source from Applix
	Craig Knudsen
	Applix Linux Division

	Linux Distributions Comparison
	Ellen M. Dahl
	LINUX DISTRIBUTIONS COMPARED

	Interview: Caldera's Ransom Love
	Marjorie Richardson

	Multicast: From Theory to Practice
	Juan-Mariano de Goyeneche
	The Problem
	The Solution: Multicast
	Multicast Addresses
	Configuring Your GNU/Linux Multicast Box
	Writing a Complete Multicast Application
	Sending Traffic
	Receiving Traffic
	Conclusion

	The 19th Century Meets the 21st
	Paul Murphy
	Why Wire?
	Costs
	Architecture
	Network Topology
	Security
	Name Services
	Mail Service
	Web Service
	Implementation Issues
	The Future

	Supporting Multiple Kernel Versions
	Tony Wildish
	Availability
	Preparing the Source Distributions
	Configuring the Kernels
	Building the Kernels
	Installing the Kernel Binary and Header File
Distributions
	Post-Installation Steps
	Cloning the Kernel Repository
	Summary

	Focus on Software
	David A. Bandel

	Dynamic Graphics
	Reuven M. Lerner
	Perl, Dynamic Graphics and GD
	A Simple Graphics Program
	Charts and Graphs
	Charting Based on a File
	Retrieving Data from a Database
	Modifying the Graph
	Conclusion

	Voice-Over IP for Linux
	Greg Herlein
	Ed Okerson
	The Hardware
	Getting the Driver
	Licensing
	Requirements
	Configuration
	Use of the Driver
	Example Code
	Test Applications
	Known Limitations
	The Future
	More Information

	cron: Job Scheduler
	Michael S. Keller
	History of cron
	How to Use cron
	Pre-Configured cron Jobs
	Additional Reading
	Conclusion

	Red Hat Linux 6.0
	Jason Kroll
	Installation
	GNOME
	Technical Changes
	Application CD
	Support and Manuals
	Conclusion

	Applixware 4.4.1 for Linux
	Dean M. Staff
	Rating
	Importing to Applix Words ****
	Importing to Applix Spreadsheets ***
	Importing to Applix Presents *
	Importing to Applix Data *
	Exporting from Applixware ***

	Linux Device Drivers
	Mark Bishop

	Learning Perl/Tk
	Bill Cunningham

	Letters to the Editor
	Various
	tkdiff
	Bug in Pthread Code
	Coming of Age
	Great awk Article
	Kernel Korner
	Rave

	More Letters to the Editor,
	Smudgy Ink and Page Borders
	BTS
	Thinkpad 750CS Article
	Opinion: LJ and the future
	“Letters to the editor”
	LTE letter
	Article Review for issue 2!
	Article: “The Point Really is Free Beer”
	Credibility
	Beginners section
	Issues with the August issue...
	A Letter for the “Letters” Column
	Linux Expo
	Article in August Linux Journal
	Multi-Threaded Programming
	PCI Modem letters-to-editor
	PS/2 mouse problems FYI
	“PCI modems”

	UpFRONT
	Doc Searls
	LJ INDEX—September 1999
	Sources
	ROCK & RULE
	LINUX USERS
	EVENTS
	GAMES FOCUS
	MOST POPULAR WINDOW MANAGER
	Earth-shaking Harbingers
	You'd Understand if you Majored in Pheesoox
	VENDOR NEWS
	Stop the Presses
	Readers' Choice Awards

	The New Building Trade
	Doc Searls

	New Products
	Ellen Dahl
	AccuRev
	SQL Anywhere Studio
	Pogo Linux Systems
	Thin-Server Appliance Software
	Code Fusion
	HOOPS/AFC
	Multiprotocol Routers
	iASP
	LinkScan 5.4 Workstation and Server
	XML Pro v2.0
	RS2000 Remote Access Card

	Best of Technical Support
	Various
	Adding New Users
	File Type
	Voice/Faxmodem Problem
	Java Crashing Netscape?
	PPP and Network Configuration
	Mounting NFS
	Hard Drive Problems

	Adventure
	Joseph Pranevich
	My Story
	History of Adventure
	An Evolutionary “Dead End”?
	The Game

	Remotely Monitoring a Satellite Instrument
	Guy Beaver
	Requirements
	Design
	Implementation
	Results/Benefits

	First UNIX/Linux National Competition Held in Ljubljana, Slovenia
	Primoz Peterlin
	Ales Kosir
	Exercises
	General Rules
	Solutions
	Results

	Filters
	Paul Dunne
	grep
	Extended Grep
	tr
	sort
	head and tail
	Programmable Filters
	sed
	AWK
	Pipes: When One Filter Isn't Enough
	Power Filters
	Conclusion

	The Unified Modeling Language User Guide
	Geoff Glasson


